Modeling Approach to Determine Short- and Long-Term Thermal and Thermomechanical Effects of Waste Emplacement in a Repository in Basalt

1981 ◽  
Vol 11 ◽  
Author(s):  
Terry F. Lehnhoff ◽  
K. Thirumalai ◽  
Alan D. Krug

The Columbia River basalts, which underlie a large portion of the Pacific Northwest of the United States of America, are being investigated as one of the candidate media for a nuclear waste repository. The Basalt Waste Isolation Project (BWIP) of Rockwell Hanford Operations (Rockwell) is conducting these investigations for the U.S. Department of Energy (DOE). Since the inception of the program in 1976, a number of studies have led to the selection of a reference repository location and the start of construction of an exploratory shaft.1-3

2016 ◽  
Vol 148 (5) ◽  
pp. 616-618 ◽  
Author(s):  
E.R. Echegaray ◽  
R.N. Stougaard ◽  
B. Bohannon

AbstractEuxestonotus error (Fitch) (Hymenoptera: Platygastridae) is considered part of the natural enemy complex of the wheat midge Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Although previously reported in the United States of America, there is no record for this species outside the state of New York since 1865. A survey conducted in the summer of 2015 revealed that E. error is present in northwestern Montana and is likely playing a role in the suppression of wheat midge populations.


2020 ◽  
Vol 54 (6) ◽  
pp. 44-61
Author(s):  
Lindsay M. Sheridan ◽  
Raghavendra Krishnamurthy ◽  
Alicia M. Gorton ◽  
Will J. Shaw ◽  
Rob K. Newsom

AbstractThe offshore wind industry in the United States is gaining strong momentum to achieve sustainable energy goals, and the need for observations to provide resource characterization and model validation is greater than ever. Pacific Northwest National Laboratory (PNNL) operates two lidar buoys for the U.S. Department of Energy (DOE) in order to collect hub height wind data and associated meteorological and oceanographic information near the surface in areas of interest for offshore wind development. This work evaluates the performance of commonly used reanalysis products and spatial approximation techniques using lidar buoy observations off the coast of New Jersey and Virginia, USA. Reanalysis products are essential tools for setting performance expectations and quantifying the wind resource variability at a given site. Long-term accurate observations at typical wind turbine hub heights have been lacking at offshore locations. Using wind speed observations from both lidar buoy deployments, biases and degrees of correspondence for the Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2), the North American Regional Reanalysis (NARR), ERA5, and the analysis system of the Rapid Refresh (RAP) are examined both at hub height and near the surface. Results provide insights on the performance and uncertainty of using reanalysis products for long-term wind resource characterization. A slow bias is seen across the reanalyses at both deployment sites. Bias magnitudes near the surface are on the order of 0.5 m s−1 greater than their hub height counterparts. RAP and ERA5 produce the highest correlations with the observations, around 0.9, followed by MERRA-2 and NARR.


2011 ◽  
Vol 91 (5) ◽  
pp. 907-918 ◽  
Author(s):  
Lois Braun ◽  
Jeffrey Gillman ◽  
Emily Hoover ◽  
Michael Russelle

Braun, L. C., Gillman, J. H., Hoover, E. E. and Russelle, M. P. 2011. Nitrogen fertilization for young established hybrid hazelnuts in the Upper Midwest of the USA. Can. J. Plant Sci. 91: 907–918. Hybrids of Corylus avellana, C. americana and C. cornuta are proposed as a new crop for the Upper Midwest. Anecdotal information from midwestern growers suggests that these hybrid hazelnuts have high N requirements, but this has not been confirmed in replicated trials. Current nitrogen (N) recommendations for hazelnut production are based on research from the Pacific Northwest and may not be applicable to these hybrids in the Upper Midwest due to differing soils, climate, genetics, and growing systems. Three years of N rate trials on four plantings, that were 3 to 6 yr old at the start, showed that N responses of hybrid hazelnuts fit patterns for other woody crops: no N responses were found on soils with high organic matter, nor on soils with suspected P or K deficiencies. Where N responses were observed, they suggested that the N requirements of hybrid hazelnuts in the Upper Midwest are relatively low compared with those of European hazelnuts in the Pacific Northwest. Leaf N concentrations were within the expected ranges established for European hazelnuts in Oregon, suggesting that Oregon's standards may be applied to hybrid hazelnuts, except that 2.2% leaf N should be considered adequate, rather than a threshold to sufficiency.


2018 ◽  
Vol 34 (1) ◽  
pp. 225-230
Author(s):  
James H Dooley ◽  
Matthew J Wamsley ◽  
Jason M Perry

Abstract. This article describes how the moisture content of baled woody biomass varied during long-term open-air storage under conditions in the Pacific Northwest region of the United States. Large rectangular bales of forest and urban biomass were produced beginning in August 2015 and periodically until June 2016. Weights were measured approximately monthly until the entire lot of bales was ground into fuel in December 2016. Because it was impractical to non-destructively obtain moisture content samples during the study, final moisture content was measured from the ground material. Estimated temporal moisture contents were back-calculated from the final dry weight and moisture content of bales. All bales dried considerably during the spring and summer months, achieving a minimum moisture content in the early fall of 15 to 29% (wb). Minimum early fall moisture content had no correlation with the initial moisture content at time of baling. The ending moisture content in December 2016 ranged from 44% to 57% (wb), with a mean moisture content of 53% (wb). Ending moisture content had no correlation with initial moisture content at the time of baling, but appeared to be related to the amount of fine versus coarse woody material in the bales. Bales of forest and urban woody biomass proved to be structurally stable during long-term storage to enable handling and final transport to a centralized grinding location. Keywords: Density, Logging, Baling, Bioenergy, Biofuel, Bundling, Forest operations, Forestry, MC, Seasonality, Transport, Woody biomass.


2021 ◽  
Vol 13 (24) ◽  
pp. 13987
Author(s):  
Maureen Puettmann ◽  
Francesca Pierobon ◽  
Indroneil Ganguly ◽  
Hongmei Gu ◽  
Cindy Chen ◽  
...  

Manufacturing of building materials and construction of buildings make up 11% of the global greenhouse gas emission by sector. Mass timber construction has the potential to reduce greenhouse gas emissions by moving wood into buildings with designs that have traditionally been dominated by steel and concrete. The environmental impacts of mass timber buildings were compared against those of functionally equivalent conventional buildings. Three pairs of buildings were designed for the Pacific Northwest, Northeast and Southeast regions in the United States to conform to mass timber building types with 8, 12, or 18 stories. Conventional buildings constructed with concrete and steel were designed for comparisons with the mass timber buildings. Over all regions and building heights, the mass timber buildings exhibited a reduction in the embodied carbon varying between 22% and 50% compared to the concrete buildings. Embodied carbon per unit of area increased with building height as the quantity of concrete, metals, and other nonrenewable materials increased. Total embodied energy to produce, transport, and construct A1–A5 materials was higher in all mass timber buildings compared to equivalent concrete. Further research is needed to predict the long-term carbon emissions and carbon mitigation potential of mass timber buildings to conventional building materials.


1951 ◽  
Vol 45 (S2) ◽  
pp. 51-57

The United States of America and the United Mexican States consideringtheir respective interests in maintaining the populations of certain tuna and tuna-like fishes in the waters of the Pacific Ocean off the coasts of both countries.


Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 797-803 ◽  
Author(s):  
Renuka N. Attanayake ◽  
Dean A. Glawe ◽  
Frank M. Dugan ◽  
Weidong Chen

The taxonomy of the powdery mildew fungus infecting lentil in the Pacific Northwest (PNW) of the United States was investigated on the basis of morphology and rDNA internal transcribed spacer (ITS) sequences. Anamorphic characters were in close agreement with descriptions of Erysiphe trifolii. However, teleomorphs formed chasmothecial appendages with highly branched apices, whereas E. trifolii has been described as producing flexuous or sometimes loosely branched appendages. Branched appendages have been described in Erysiphe diffusa, a fungus reported from species of Lens, Glycine, and Sophora, raising the possibility that the PNW fungus could be E. diffusa. Examination of morphological characters of an authentic specimen of E. trifolii from Austria determined that it included chasmothecial appendages resembling those seen in PNW specimens. Furthermore, ITS sequences from five powdery mildew samples collected from lentils in PNW greenhouses and fields from 2006 to 2008 were identical to one another, and exhibited higher similarity to sequences of E. trifolii (99%) than to those of any other Erysiphe spp. available in GenBank. Parsimony analysis grouped the lentil powdery mildew into a clade with Erysiphe baeumleri, E. trifolii, and E. trifolii–like Oidium sp., but indicated a more distant relationship to E. diffusa. In greenhouse inoculation studies, the lentil powdery mildew fungus did not infect soybean genotypes known to be susceptible to E. diffusa. The pathogenicity of E. trifolii on lentil was confirmed using modified Koch's postulates. This is the first report of E. trifolii infecting lentil. E. diffusa and E. trifolii have different host ranges, so the discovery of E. trifolii on lentil has implications both for determining species of powdery mildews on cool-season grain legumes, and in disease management.


Sign in / Sign up

Export Citation Format

Share Document