Deformation Behavior of Niobium Silicides during High Temperature Compression

2008 ◽  
Vol 1128 ◽  
Author(s):  
Nobuaki Sekido ◽  
Seiji Miura ◽  
Yoko Yamabe-Mitarai ◽  
Yoshisato Kimura ◽  
Yoshinao Mishima

AbstractDeformation behavior of (Nb)/α-Nb5Si3 two-phase alloys is examined by high temperature compression tests. The alloys exhibit brittle fracture behavior at temperatures up to 1473 K, while reasonable compressive deformability at 1673 K. Upon high temperature compression of the alloys, the flow stress gradually decreases after the peak stress due to the recrystallization/recovery in the (Nb) phase, as well as the increase in the density of mobile dislocations within the α-Nb5Si3 phase. Two types of slip systems that operate in α-Nb5Si3 have been identified as {011)<11-1] and {001)<100] in the present study.

2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2011 ◽  
Vol 117-119 ◽  
pp. 893-896
Author(s):  
Yong Liu ◽  
Yong Wei Sun ◽  
Bao Hong Tian ◽  
Jiang Feng ◽  
Yi Zhang

Hot deformation behavior of the 30%Mo/Cu-Al2O3 composite was investigated by hot compression tests on Gleeble-1500D thermal simulator in the temperature ranges of 450~750°C and the strain rate ranges of 0.01~5s-1, as the total strain is 0.7. The results show that the peak stress increases with the decreased deformation temperature or the increased strain rate. Based on the true stress-strain curves, the established constitutive equation represents the high-temperature flow behavior of the composite, and the calculated flow stresses are in good agreement with the high- temperature deformation experimental results.


2012 ◽  
Vol 538-541 ◽  
pp. 945-950 ◽  
Author(s):  
Jiang Kun Fan ◽  
Hong Chao Kou ◽  
Min Jie Lai ◽  
Bin Tang ◽  
Hui Chang ◽  
...  

The effects of processing parameters on deformation behavior of a new near β titanium alloy were investigated by using compression tests. The experiments were carried out in the Gleeble-3800 thermal and mechanical simulator in the temperature range of 770-970°C and strain rate range of 10-3-10s-1, and height direction reduction of 70%. The results show that the flow stress of Ti-7333 titanium alloy increases obviously with the strain and reaches a peak, then decreases to a steady value. The steady and peak stress significantly decreases with the increase of deformation temperature and decrease of strain rate. The flow stress model of Ti-7333 titanium alloy during high temperature deformation was established by using the regression method. The average relative difference between the calculated and experimental flow stress is 6.33%. The flow stress model can efficiently predict the deformation behavior of Ti-7333 titanium alloy during high temperature deformation.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1614
Author(s):  
Hongqiang Liu ◽  
Zhicheng Cheng ◽  
Wei Yu ◽  
Gaotian Wang ◽  
Jie Zhou ◽  
...  

High-temperature reduction pretreatment (HTRP) is a process that can significantly improve the core quality of a billet. The existing flow stress data cannot meet the needs of simulation due to lack of high temperature data. To obtain the hot forming process parameters for the high-temperature reduction pretreatment process of 42CrMo steel, a hot compression experiment of 42CrMo steel was conducted on Gleeble-3500 thermal-mechanical at 1200–1350 °C with the rates of deformation 0.001–10 s−1 and the deformation of 60%, and its deformation behavior at elevated temperature was studied. In this study, the effects of flow stress temperature and strain rate on austenite grain were investigated. Moreover, two typical constitutive models were employed to describe the flow stress, namely the Arrhenius constitutive model of strain compensation and back propagation artificial neural network (BP ANN) model. The performance evaluation shows that BP ANN model has high accuracy and stability to predict the curve. The thermal processing maps under strains of 0.1, 0.2, 0.3, and 0.4 were established. Based on the analysis of the thermal processing map, the optimal high reduction process parameter range of 42CrMo is obtained: the temperature range is 1250–1350 °C, and the strain rate range is 0.01–1 s−1.


2007 ◽  
Vol 539-543 ◽  
pp. 3607-3612 ◽  
Author(s):  
Jeoung Han Kim ◽  
Jong Taek Yeom ◽  
Nho Kwang Park ◽  
Chong Soo Lee

The high-temperature deformation behavior of the single-phase α (Ti-7.0Al-1.5V) and α + β (Ti-6Al-4V) alloy were determined and compared within the framework of self-consistent scheme at various temperature ranges. For this purpose, isothermal hot compression tests were conducted at temperatures between 650°C ~ 950°C to determine the effect of α/β phase volume fraction on average flow stress under hot-working condition. The flow behavior of α phase was estimated from the compression test results of single-phase α alloy whose chemical composition is close to that of α phase of Ti-6Al-4V alloy. On the other hand, the flow stress of β phase in Ti-6Al-4V was predicted by using self-consistent method. The flow stress of α phase was higher than that of β phase above 750°C, while the β phase revealed higher flow stress than α phase at 650°C. Also, at temperature above 750°C, the predicted strain rate of β phase was higher than that of α phase. It was found that the relative strength between α and β phase significantly varied with temperature.


1999 ◽  
Vol 14 (3) ◽  
pp. 715-728 ◽  
Author(s):  
P. Zhao ◽  
D. G. Morris ◽  
M. A. Morris Munoz

High-temperature forging experiments have been carried out by axial compression testing on a Fe–41Al–2Cr alloy in order to determine the deformation systems operating under such high-speed, high-temperature conditions, and to examine the textures produced by such deformation and during subsequent annealing to recrystallize. Deformation is deduced to take place by the operation of 〈111〉 {110} and 〈111〉{112} slip systems at low temperatures and by 〈100〉{001} and 〈100〉{011} slip systems at high temperatures, with the formation of the expected strong 〈111〉 textures. The examination of the weak 〈100〉 texture component is critical to distinguishing the operating slip system. Both texture and dislocation analyses are consistent with the operation of these deformation systems. Recrystallization takes place extremely quickly at high temperatures (above 800 °C), that is within seconds after deformation and also dynamically during deformation itself. Recrystallization changes the texture such that 〈100〉 textures superimpose on the deformation texture. The flow stress peak observed during forging is found at a very high temperature. Possible origins of the peak are examined in terms of the operating slip systems.


2020 ◽  
Vol 831 ◽  
pp. 25-31
Author(s):  
Pan Fei Fan ◽  
Jian Sheng Liu ◽  
Hong Ping An ◽  
Li Li Liu

In order to obtain the high temperature flow behavior of as-cast SA508-3 low alloy steel, the stress-strain curves of steel are obtained by Gleeble thermal simulation compression test at deformation temperature 800°C-1200°C and strain rate 0.001s-1-1s-1. Based on Laasraoui two-stage flow stress model, a high temperature flow stress model is established by multiple linear regression method. The results show that the peak stress characteristics are not obvious at low temperature and high strain rate, which is a typical dynamic recovery characteristic. Meanwhile, the peak stress characteristics are obvious at high temperature and low strain rate, which is a typical dynamic recrystallization characteristic. By means of the comparisons between experiments and calculations, the Laasraoui two-stage flow stress model can truly reflect flow behavior of steel at high temperature, which provides theoretical guidance for the hot deformation of the steel.


2014 ◽  
Vol 887-888 ◽  
pp. 1161-1168
Author(s):  
Jian Guo Wang ◽  
Dong Liu ◽  
Tao Wang ◽  
Yan Hui Yang

The deformation behavior of a Udimet720Li superalloy under hot compression tests was characterized in the temperature range of 1060~1160°C and strain rate range of 0.001~20s-1. Processing maps were conducted at a series of strains to calculate the efficiency of hot working and to recognize the instability regions of the flow behavior. A Zener-Hollomon parameter is given to characterize the dependence of peak stress on temperature and strain rate. The efficiency of power dissipation of the Udimet720Li superalloy obtained in a strain range of 0.1~0.7 are essentially similar, which indicates that strain does not have a significant influence and the instability region shown in high strain and high strain rates at all temperatures. The regions for the full recrystallization can be divided by the dissolution beginning temperature of primary γ'which are the optimum hot working parameters.


2018 ◽  
Vol 913 ◽  
pp. 30-36
Author(s):  
Ran Liu ◽  
Hui Huang ◽  
Ya Liu ◽  
Li Rong

To study the hot deformation behavior of Al-Mg-Er alloy, hot compression tests were conducted on a Gleeble-1500D thermal simulator at the temperature range of 200-500°C with the strain rates from 0.001 to 10s-1. With the increase in the deformation temperature and the decrease in strain rates, the flow stress of the Al-Mg-Er alloy decreased. Processing maps were constructed to study on hot workability characteristics. The results showed that the flow stress curves exhibited the typical dynamic recrystallization characteristics and the stress decreased with the increase of deformation temperature and the decrease of strain rate. Moreover, the processing maps were established on the basis of dynamic material model and Prasad’s instability criterion.


2013 ◽  
Vol 709 ◽  
pp. 143-147 ◽  
Author(s):  
Tao Wang ◽  
Zhao Li ◽  
Shu Hong Fu ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

The hot deformation behavior of U720Li was investigated by isothermal compression tests at temperature ranging from 1060-1180°C and strain rate from 0.001s-1 to 20s-1. The flow stress-strain curves and microstructures were investigated and a constitutive equation was established. It is found that flow stress is sensitive to stain rate and deformation temperature greatly. The higher stain rate resultes in a larger fluctuation in flow stress. The hot deformation activation energy is determined to be 552.8kJ/mol. Grain size increases with increasing temperature and decreases firstly and then increases with increasing strain rate. U720Li alloy should be deformed below the solve temperature of γ primary phase with lower strain rate in order to obtain the even and fine grain size.


Sign in / Sign up

Export Citation Format

Share Document