Spectroscopic Study and Amorphous Film Deposition in RF and Pulsed Plasma Processings

1988 ◽  
Vol 117 ◽  
Author(s):  
Kenji Ebihara ◽  
Seiji Kanazawa ◽  
Sadao Maeda

AbstractProcessing plasmas generated by three types of discharges are diagnosed spectroscopically in order to estimate the quantitative relationship between plasma parameters and electrical and optical properties of deposited materials. An rf discharge is capacitively produced by a 13.56 MHz rf oscillator. A microwave generator operating at 2.45 GHz is used to supply power to a discharge cavity. Further a pulsed plasma which is inductively generated by pulsed current ( 70 kA peak ) is applied to study dissociation process in the transient plasma and possibility of a novel processing system. The gases used are methane for amorphous carbon formation and silane for amorphous silicon deposition. Measurements of optical emission spectrum are performed to estimate the processing plasma state by the relative spectral intensity method and the Doppler-broadening method.

2014 ◽  
Vol 1035 ◽  
pp. 469-475 ◽  
Author(s):  
Jia Jun Li ◽  
Yan Chao Shi ◽  
Hao Liu ◽  
Guang Chao Chen

Optical Emission Spectrum (OES) was utilized to monitor the deposition procedure of copper film byradio frequency (RF) magnetron sputtering.The plasma was found to contain Ar, Ar+, Cu and Cu+ when Argon was the working gas. The OES intensity of each composition increased with the increase of the input power of sputtering. Furthermore, intensity of Cu was higher than that ofAr, Ar+ and Cu+. The mechanical property of as-deposited Cu film was measured by scratch test method. It was found that with the increase of the input power, the adhesion strength possessed the maximum value while the square resistance decreased and surface roughness obviously. Theory calculation shows these properties were connected to kinetic energy of atoms in the plasma.


2021 ◽  
Vol 32 (3) ◽  
pp. 49
Author(s):  
Hadeel K. Nasif ◽  
Baida M. Ahmed ◽  
Kadhim A. Aadim

A spectroscope presents the optical emission spectroscopy (OES) technique on laser-produced copper and silver plasmas. The optical emission spectrum technique was used to analyzes the spectrum arising from the Cu, Ag Laser Nd: YAG plasmas with a wavelength of (1064) nm, a span of (10) ns, and a focal length of (10) cm in the energy range (300-800) mJ. The electron temperature (Te) was determined while the Saha-Boltzmann equation was used to measure the electron density (ne). Other plasma parameters, (λD), (fp), (ND), were also measured. For various energies, the plasma spectrum was registered copper and silver. Q-switched Nd: YAG liquid laser ablation technique (PLAL) was used to produce nanoparticles (NPs), silver, and copper particles using distilled water at room temperature at different energies (300-600-800) mJ. With a constant wavelength (1064nm). At a constant frequency (6Hz), 300 laser pulses were used to ablate the target placed in distilled water to study the effect of these materials in inhibiting bacteria. Bacteria were used (Staphylococcus). This study showed that (Ag-NPs) and (Cu-NPs) that are synthesized by laser ablation have a great effect on Staphylococcus (antibiotic-resistant) bacteria.


2020 ◽  
pp. 1665-1671
Author(s):  
Madyan A. Khalaf ◽  
Baida M. Ahmed ◽  
Kadhim A. Aadim

In this work, the optical emission spectrum technique was used to analyze the spectrum resulting from the CdO:Sn plasma produced by laser Nd:YAG with a wavelength of (1064) nm, duration of (9) ns, and a focal length of (10) cm in the range of energy of 500-800 mJ. The electron temperature (Te) was calculated using the in ratio line intensities method, while the electron density (ne) was calculated using Saha-Boltzmann equation. Also, other plasma parameters were calculated, such as plasma (fp), Debye length (λD) and Debye number (ND). At mixing ratios of X=0.1, 0.3 and 0.5, the CdO1-X :SnX plasma spectrum was recorded for different energies. The changes in electron temperature and the densities were studied as a function of the laser energies. Outcome measure value of the electron temperature at the ratio of  X = 0.1 was (1.079-1.054) eV, while at  X=0.3 the Te range was (0.952- 0.921) eV and at X=0.5 it was (0.928-0.906) eV.


2020 ◽  
pp. 110-113

In this research the diagnostic of optical emission spectroscopy from exploding copper wires have done for different current. By using Boltzman plot can be calculated the plasma electron temperature , and by using Stark broadening can be evaluated the electron density for different current of (75, 100 and 150)A with diameter 0.25 mm in deionized water. It was observed that the electron density decrease with an increasing the current from 75 A to 150 A while the electron temperatures increase for the same current. The plasma has a peak 652 nm corresponding to Hα line for .hydrogen .atoms which obtained from .optical emission spectrum (OES), the peaks belong to atomic copper lines. The plasma electron temperature related with emission line intensity and number .density with the formed copper nanoparticles size was studied.


1984 ◽  
Vol 38 ◽  
Author(s):  
R. Walkup ◽  
K. Saenger ◽  
G. S. Selwyn

AbstractWe report quantitative measurements of the concentration of atomic oxygen in RF plasmas determined by two-photon laser induced fluorescence. The results are compared with concurrent measurements of spatially resolved plasma induced optical emission. These measurements establish: (1) the O atom concentration as a function of plasma parameters, (2) a semi-quantitative relationship between O* emission intensity normalized by Ar* in-tensity and O atom concentration, and (3) an understanding of the mechanisms for pro-duction of excited atoms in the plasma.


2021 ◽  
pp. 2948-2955
Author(s):  
Maryam M. Shehab ◽  
Kadhim A. Aadim

      In this paper, the optical emission spectrum (OES) technique was used to analyze the spectrum resulting from the (CdO:CoO)  plasma in air, produced by Nd:YAG laser with λ=1064 nm, τ=10 ns, a focal length of 10 cm, and a range of energy of 200-500 mJ. We identified laser-induced plasma parameters such as electron temperature (Te) using Boltzmann plot method, density of electron (ne), length of Debye (λD), frequency of plasma (fp), and number of Debye (ND), using two-Line-Ratio method. At a mixing ratio of X= 0.5, the (CdO:CoO) plasma spectrum was recorded for different energies. The results of plasma parameters caused by laser showed that, with the increase in laser energy, the values of Te, ne and fp were increased, while the value of λD was decreased. The calculated electron temperature value was in the range of 0.449-0.619 eV at ratio X=0.5


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1595
Author(s):  
Nomin Lim ◽  
Yeon Sik Choi ◽  
Alexander Efremov ◽  
Kwang-Ho Kwon

This research work deals with the comparative study of C6F12O + Ar and CF4 + Ar gas chemistries in respect to Si and SiO2 reactive-ion etching processes in a low power regime. Despite uncertain applicability of C6F12O as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO2; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters. It was found that both gas systems exhibit (a) similar changes in ion energy flux and F atom flux with variations on input RF power and gas pressure; (b) quite close polymerization abilities; and (c) identical behaviors of Si and SiO2 etching rates, as determined by the neutral-flux-limited regime of ion-assisted chemical reaction. Principal features of C6F12O + Ar plasma are only lower absolute etching rates (mainly due to the lower density and flux of F atoms) as well as some limitations in SiO2/Si etching selectivity.


1987 ◽  
Vol 98 ◽  
Author(s):  
L. J. Overzet ◽  
J. T. Verdeyen ◽  
R. M. Roth ◽  
F. F. Carasco

ABSTRACTThe time evolution of the electron density and the optical emission intensity in response to a square wave modulated RF excitation of helium-silane mixtures has been studied and compared to that for the more conventional CW discharge. In addition, the films deposited from CW and modulated RF glows have-been compared on the basis of absorption coefficients and photoconductivities. Films deposited from modulated glows at substrate temperatures below 200°C have significantly smaller optical bandgaps than those deposited from comparable CW discharges. The bulk electron density in the modulated discharge undergoes a complex temporal variation and its time average value can be significantly larger than that in the CW glow despite the lower average power. A dissociative attachment process involving silane radicals, SiHn (n = 1 to 3), is identified as the most probable cause.


2021 ◽  
Author(s):  
Lorenzo Pino ◽  
Matteo Brogi ◽  
Jean-Michel Désert ◽  
Emily Rauscher

<p>Ultra-hot Jupiters (UHJs; T<sub>eq</sub> ≥ 2500 K) are the hottest gaseous giants known. They emerged as ideal laboratories to test theories of atmospheric structure and its link to planet formation. Indeed, because of their high temperatures, (1) they likely host atmospheres in chemical equilibrium and (2) clouds do not form in their day-side. Their continuum, which can be measured with space-facilities, can be mostly attributed to H- opacity, an indicator of metallicity. From the ground, the high spectral resolution emission spectra of UHJs contains thousands of lines of refractory (Fe, Ti, TiO, …) and volatile species (OH, CO, …), whose combined atmospheric abundances could track planet formation history in a unique way. In this talk, we take a deeper look to the optical emission spectrum of KELT-9b covering planetary phases 0.25 - 0.75 (i.e. between secondary eclipse and quadrature), and search for the effect of atmospheric dynamics and three-dimensionality of the planet atmosphere on the resolved line profiles, in the context of a consolidated statistical framework. We discuss the suitability of the traditionally adopted 1D models to interprete phase-resolved observations of ultra-hot Jupiters, and the potential of this kind of observations to probe their 3D atmospheric structure and dynamics. Ultimately, understanding which factors affect the line-shape in UHJs will also lead to more accurate and more precise abundance measurements, opening a new window on exoplanet formation and evolution.</p>


2010 ◽  
Vol 30 (4) ◽  
pp. 449-459 ◽  
Author(s):  
N. A. Harabor ◽  
A. Harabor ◽  
I. Palarie ◽  
I. M. Popescu ◽  
G. Zissis

Sign in / Sign up

Export Citation Format

Share Document