Structural Fingerprinting of Nanocrystals: Advantages of Precession Electron Diffraction, Automated Crystallite Orientation and Phase Maps

2009 ◽  
Vol 1184 ◽  
Author(s):  
Peter Moeck ◽  
Sergei Rouvimov ◽  
Edgar Rauch ◽  
Stavros Nicolopoulos

AbstractStrategies for the structurally identification of nanocrystals from Precession Electron Diffraction (PED) patterns in a Transmission Electron Microscope (TEM) are outlined. A single-crystal PED pattern may be utilized for the structural identification of an individual nanocrystal. Ensembles of nanocrystals may be fingerprinted structurally from “powder PED patterns”. Highly reliable “crystal orientation & structure” maps may be obtained from automatically recorded and processed scanning-PED patterns at spatial resolutions that are superior to those of the competing electron backscattering diffraction technique of scanning electron microscopy. The analysis procedure of that automated technique has recently been extended to Fourier transforms of high resolution TEM images, resulting in similarly effective mappings. Open-access crystallographic databases are mentioned as they may be utilized in support of our structural fingerprinting strategies.

2011 ◽  
Vol 1318 ◽  
Author(s):  
Sergei Rouvimov ◽  
Peter Moeck ◽  
Ines Häusler ◽  
Wolfgang Neumann ◽  
Stavros Nicolopoulos

ABSTRACTAn automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope (TEM) is briefly described. It is primarily based on the projected reciprocal lattice geometry that is extracted automatically from precession electron diffraction (PED) enhanced spot patterns. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any newer or older mid-voltage TEM. Comprehensive open-access crystallographic databases that may be used in support of this technique are mentioned.


Author(s):  
S. Shinozaki ◽  
J. W. Sprys

In reaction sintered SiC (∽ 5um average grain size), about 15% of the grains were found to have long-period structures, which were identifiable by transmission electron microscopy (TEM). In order to investigate the stability of the long-period polytypes at high temperature, crystal structures as well as microstructural changes in the long-period polytypes were analyzed as a function of time in isothermal annealing.Each polytype was analyzed by two methods: (1) Electron diffraction, and (2) Electron micrograph analysis. Fig. 1 shows microdensitometer traces of ED patterns (continuous curves) and calculated intensities (vertical lines) along 10.l row for 6H and 84R (Ramsdell notation). Intensity distributions were calculated based on the Zhdanov notation of (33) for 6H and [ (33)3 (32)2 ]3 for 84R. Because of the dynamical effect in electron diffraction, the observed intensities do not exactly coincide with those intensities obtained by structure factor calculations. Fig. 2 shows the high resolution TEM micrographs, where the striped patterns correspond to direct resolution of the structural lattice periodicities of 6H and 84R structures and the spacings shown in the figures are as expected for those structures.


2010 ◽  
Vol 66 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Mingrun Li ◽  
Junliang Sun ◽  
Peter Oleynikov ◽  
Sven Hovmöller ◽  
Xiaodong Zou ◽  
...  

The structure of a complicated quasicrystal approximant ∊16 was predicted from a known and related quasicrystal approximant ∊6 by the strong-reflections approach. Electron-diffraction studies show that in reciprocal space, the positions of the strongest reflections and their intensity distributions are similar for both approximants. By applying the strong-reflections approach, the structure factors of ∊16 were deduced from those of the known ∊6 structure. Owing to the different space groups of the two structures, a shift of the phase origin had to be applied in order to obtain the phases of ∊16. An electron-density map of ∊16 was calculated by inverse Fourier transformation of the structure factors of the 256 strongest reflections. Similar to that of ∊6, the predicted structure of ∊16 contains eight layers in each unit cell, stacked along the b axis. Along the b axis, ∊16 is built by banana-shaped tiles and pentagonal tiles; this structure is confirmed by high-resolution transmission electron microscopy (HRTEM). The simulated precession electron-diffraction (PED) patterns from the structure model are in good agreement with the experimental ones. ∊16 with 153 unique atoms in the unit cell is the most complicated approximant structure ever solved or predicted.


2010 ◽  
Vol 16 (S2) ◽  
pp. 768-769 ◽  
Author(s):  
S Rouvimov ◽  
P Moeck ◽  
E Rauch ◽  
Y Maniette ◽  
D Bultreys

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2010 ◽  
Vol 644 ◽  
pp. 1-7 ◽  
Author(s):  
Joaquim Portillo ◽  
Edgar F. Rauch ◽  
Stavros Nicolopoulos ◽  
Mauro Gemmi ◽  
Daniel Bultreys

Precession electron diffraction (PED) is a new promising technique for electron diffraction pattern collection under quasi-kinematical conditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique may be used in TEM instruments of voltages 100 to 400 kV and is an effective upgrade of the TEM instrument to a true electron diffractometer. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscattered Diffraction (EBSD) technique in Scanning Electron Microscopes (SEM) at lower magnifications and longer acquisition times.


1995 ◽  
Vol 398 ◽  
Author(s):  
W. Sinkler ◽  
C. Michaelsen ◽  
R. Bormann

ABSTRACTInverse melting of bcc Nb4sCr55 is investigated using transmission electron microscopy, high-resolution TEM and electron diffraction. It is shown that the transformation to the amorphous phase initiates at the bcc grain boundaries. The transformation results in an increase in incoherence, evidenced by a loss of bend contours. Some anisotropy is found in the amorphous phase produced by inverse melting, which is associated in HRTEM with preferentially oriented but discontinuous and distorted fringes. The results are consistent with the production of an amorphous phase by inverse melting.


2018 ◽  
Vol 5 (11) ◽  
pp. 2836-2855 ◽  
Author(s):  
W. Wan ◽  
J. Su ◽  
X. D. Zou ◽  
T. Willhammar

This review presents various TEM techniques including electron diffraction, high-resolution TEM and scanning TEM imaging, and electron tomography and their applications for structure characterization of zeolite materials.


Sign in / Sign up

Export Citation Format

Share Document