Fast Detection of Perkinsus Marinus, a Prevalent Pathogen of Oysters and Clams from Sea Waters

2009 ◽  
Vol 1202 ◽  
Author(s):  
Yu-Lin Wang ◽  
B.H. Chu ◽  
K.H. Chen ◽  
Chih-Yang Chang ◽  
Tanmay P. Lele ◽  
...  

AbstractAntibody-functionalized, Au-gated AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect Perkinsus marinus. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN/GaN HEMT were grown by a molecular beam epitaxy system (MBE) on sapphire substrates. Infected sea waters were taken from the tanks in which Tridacna crocea infected with P. marinus were living and dead. The AlGaN/GaN HEMT showed a rapid response of drain-source current in less than 5 seconds when the infected sea waters were added to the antibody-immobilized surface. The recyclability of the sensors with wash buffers between measurements was also explored. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN/GaN HEMTs for Perkinsus marinus detection.

2003 ◽  
Vol 764 ◽  
Author(s):  
B. Luo ◽  
F. Ren ◽  
M. A. Mastro ◽  
D. Tsvetkov ◽  
A. Pechnikov ◽  
...  

AbstractHigh quality undoped AlGaN/GaN high electron mobility transistors(HEMTs) structures have been gorwn by Hydride Vapor Phase Epitaxy (HVPE). The morphology of the films grown on Al2O3 substrates is excellent with root-mean-square roughness of ∼0.2nm over 10×10μm2 measurement area. Capacitance-voltage measurements show formation of dense sheet of charge at the AlGaN/GaN interface. HEMTs with 1μm gate length fabricated on these structures show transconductances in excess of 110 mS/mm and drain-source current above 0.6A/mm. Gate lag measurements show similar current collapse characteristics to HEMTs fabricated in MBE- or MOCVD grown material.


Author(s):  
Lény Baczkowski ◽  
Franck Vouzelaud ◽  
Dominique Carisetti ◽  
Nicolas Sarazin ◽  
Jean-Claude Clément ◽  
...  

Abstract This paper shows a specific approach based on infrared (IR) thermography to face the challenging aspects of thermal measurement, mapping, and failure analysis on AlGaN/GaN high electron-mobility transistors (HEMTs) and MMICs. In the first part of this paper, IR thermography is used for the temperature measurement. Results are compared with 3D thermal simulations (ANSYS) to validate the thermal model of an 8x125pm AIGaN/GaN HEMT on SiC substrate. Measurements at different baseplate temperature are also performed to highlight the non-linearity of the thermal properties of materials. Then, correlations between the junction temperature and the life time are also discussed. In the second part, IR thermography is used for hot spot detection. The interest of the system for defect localization on AIGaN/GaN HEMT technology is presented through two case studies: a high temperature operating life test and a temperature humidity bias test.


2018 ◽  
Vol 58 (2) ◽  
Author(s):  
Vytautas Jakštas ◽  
Justinas Jorudas ◽  
Vytautas Janonis ◽  
Linas Minkevičius ◽  
Irmantas Kašalynas ◽  
...  

This paper reports on the AlGaN/GaN Schottky diodes (SDs) and high-electron-mobility transistors (HEMTs) grown on a semi-insulating SiC substrate. The electronic devices demonstrate an improved performance in comparison with the ones processed on a sapphire substrate. Both the SDs and HEMTs show much smaller leakage current density and a higher ION/IOFF ratio, reaching values down to 3.0±1.2 mA/cm2 and up to 70 dB under the reverse electric field of 340 kV/cm, respectively. The higher thermal conductivity of the SiC substrate leads to the increase of steady current and transconductance, and better thermal management of the HEMT devices. In addition, a successful detection of terahertz (THz) waves with the AlGaN/GaN HEMT is demonstrated at room temperature. These results open further routes for the optimization of THz designs which may result in development of novel plasmonic THz devices.


2021 ◽  
Author(s):  
H. Mosbahi ◽  
Malek GASSOUMI ◽  
A. Bchetnia ◽  
M.A. Zaidi

Abstract This work investigated the electrical properties in AlGaN/GaN/Si HEMTsgrown by molecular beam epitaxy. The electrical behavior have been investigated using by electric permittivity, modulus formalism and conductance measurements. As has been found from electrical conductance, dispersive behavior is related to barrier inhomogeneity and deep trap in barrier layer. On the other hand, the strain relaxation of charge transport is studied both permittivity and electric modulus formalisms.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2760 ◽  
Author(s):  
Pedro J. Martínez ◽  
Enrique Maset ◽  
Pedro Martín-Holgado ◽  
Yolanda Morilla ◽  
David Gilabert ◽  
...  

GaN high-electron-mobility transistors (HEMTs) are promising next-generation devices in the power electronics field which can coexist with silicon semiconductors, mainly in some radiation-intensive environments, such as power space converters, where high frequencies and voltages are also needed. Its wide band gap (WBG), large breakdown electric field, and thermal stability improve actual silicon performances. However, at the moment, GaN HEMT technology suffers from some reliability issues, one of the more relevant of which is the dynamic on-state resistance (RON_dyn) regarding power switching converter applications. In this study, we focused on the drain-to-source on-resistance (RDSON) characteristics under 60Co gamma radiation of two different commercial power GaN HEMT structures. Different bias conditions were applied to both structures during irradiation and some static measurements, such as threshold voltage and leakage currents, were performed. Additionally, dynamic resistance was measured to obtain practical information about device trapping under radiation during switching mode, and how trapping in the device is affected by gamma radiation. The experimental results showed a high dependence on the HEMT structure and the bias condition applied during irradiation. Specifically, a free current collapse structure showed great stability until 3.7 Mrad(Si), unlike the other structure tested, which showed high degradation of the parameters measured. The changes were demonstrated to be due to trapping effects generated or enhanced by gamma radiation. These new results obtained about RON_dyn will help elucidate trap behaviors in switching transistors.


Sign in / Sign up

Export Citation Format

Share Document