Gettering of Cu at Buried Damage Layers Made by Si Self Implantation

1989 ◽  
Vol 157 ◽  
Author(s):  
J.R. Liefting ◽  
R.J. Schreutelkamp ◽  
W.X. Lu ◽  
F.W. Saris

ABSTRACTChanneled implants have been performed with lOOkeV 28Si+ into p-type Si(100) to obtain a buried amorphous layer. Before and after recrystallization of the a-Si layer, Cu was implanted at an energy of 15 keV and a dose ranging from 5E13 to 1E15 I cm2- to obtain a high concentration of Cu in the near surface region. Also, Cu implants were performed into virgin Si for comparison. After Cu implantation, thermal annealing was performed at temperatures between 490 °C and 900 °C for 10 min. to 320 min. Cu profiles before and after annealing were studied with Rutherford Backscattering Spectrometry and channeling analysis. For the case where Cu was implanted after recrystallization of the buried amorphous layer, Cu was gettered at the position where the ale interfaces met during recrystallization. For the case where Cu was implanted before recrystallization, Cu diffused towards the buried a-Si region upon annealing and was trapped inside the recrystallizing buried amorphous layer. The results show that buried damage layers can effectively getter Cufrom the Si surface layer and gettering is most efficient at 600 °C.

1997 ◽  
Vol 469 ◽  
Author(s):  
V. C. Venezia ◽  
T. E. Haynes ◽  
A. Agarwal ◽  
H. -J. Gossmann ◽  
D. J. Eaglesham

ABSTRACTThe diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.


1992 ◽  
Vol 262 ◽  
Author(s):  
J. L. Benton

ABSTRACTThe electrical and optical properties of defects introduced by Reactive Ion Etching (RIE) in the near surface region of Si after dry etching with various gases and plasma conditions is studied with spreading Resistance (SR), photoluminescence (PL), and capacitance-voltage profiling (C-V). Plasma etching in chlorine and fluorine based gases produce donors at the surface in both n-type and p-type, Czochralski and float-zone silicon. Isochronal annealing reveals the presence of two distinct regions of dopant compensation. The surface damage region is confined to 1000 Å and survives heat treatment at 400°C, while the defect reaction region extends ≥ 1 μm in depth and recovers by 250°C. A comprehensive picture of the interstitial defect reactions in RIE silicon is completed. The interstitial defects, Ci and Bi, created in the ion damaged near surface region, undergo recombination enhanced diffusion caused by the presence of ultraviolet light in the plasma, resulting in the long range diffusion into the Si bulk. Subsequently, the interstitial atoms are trapped by the background impurities forming the defect pairs, CiOi, CSCi, or BiOi, which are observed experimentally. The depth of the diffusion-limited trapping and the probability of forming specific pairs depends on the relative concentrations of the reactants, oxygen, carbon or boron, present in the bulk material.


1997 ◽  
Vol 3 (S2) ◽  
pp. 467-468
Author(s):  
Lancy Tsung ◽  
Hun-Lian Tsai ◽  
Alwin Tsao ◽  
Makoto Takemura

Ion implantation of arsenic and phosphorus is a common practice in silicon devices for the formation of transistor source/drain regions. We used a TEM equipped with EDX capabilities to investigate effects of ion implantation in actual devices before and after annealing. A 200 kev field emission gun TEM was used in this study. Two implant cases were studied here. Both samples are p-type, (100) Si wafers.Figure 1 shows the microstructure in a common source region of a silicon device after being implanted by phosphorus (4x1014 cm−2 at 30 kv, 0°), while Figure 2 shows a similar region for arsenic implantation (5x1015 cm−2 at 45 kv, 0°). No screen layer was used during implantation. The phosphorus implant results in a ˜0.05 μm amorphous layer sandwiched between heavily damaged crystalline silicon. High resolution images reveal a rough amorphous/damaged crystalline boundary and high density defects due to silicon lattice displacements.


1983 ◽  
Vol 24 ◽  
Author(s):  
C. W. White ◽  
G. C. Farlow ◽  
H. Naramoto ◽  
C. J. Mchargue ◽  
B. R. Appleton

ABSTRACTPhysical and structural property changes resulting from ion implantation and thermal annealing of α-A12O3 are reviewed. Emphasis is placed on damage production during implantation, damage recovery during thermal annealing, and impurity incorporation during thermal annealing. Physical and structural property changes caused by ion implantation and annealing are correlated with changes in the mechanical properties.


2012 ◽  
Vol 1447 ◽  
Author(s):  
Sabina Abdul Hadi ◽  
Pouya Hashemi ◽  
Nicole DiLello ◽  
Ammar Nayfeh ◽  
Judy L. Hoyt

ABSTRACTIn this paper the effect of Si1-xGex absorber layer thickness on thin film a-Si:H/crystalline-Si1-xGex/c-Si heterojunction solar cells (HIT cells) is studied by simulation and experiment. Cells with 1, 2 and 4 μm-thick epitaxial cap layers of p-type Si0.59Ge0.41 on top of 5 μm Si1-xGex graded buffer layers are fabricated and compared to study the effect of the absorber layer thickness. The results show no change in Voc (0.41V) and that Jsc increases from 17.2 to 18.1 mA/cm2 when the Si0.59Ge0.41 absorber layer thickness is increased from 1 to 4 μm. The effect of thickness on Jsc is also observed for 2 and 4 μm-thick Si and Si0.75Ge0.25 absorber layers. Experiments and simulations show that larger Ge fractions result in a higher magnitude and smaller thickness dependence of Jsc, due to the larger absorption coefficient that increases optical carrier generation in the near surface region for larger Ge contents.


2000 ◽  
Vol 639 ◽  
Author(s):  
D.G. Kent ◽  
K.P. Lee ◽  
A.P. Zhang ◽  
B. Luo ◽  
M.E. Overberg ◽  
...  

ABSTRACTThe extent of damage recovery by N2 plasma treatment of previously damaged n- and p-GaN has been examined using current-voltage (I-V) characteristics from Schottky diodes. There are two contributions to the observed improvement in the I-V characteristics, namely a simple annealing effect and also a chemical effect from reactive nitrogen. However the N2 plasma treatment does not fully restore the initial electrical properties of the near-surface region.


1994 ◽  
Vol 01 (04) ◽  
pp. 569-571 ◽  
Author(s):  
M. BOWKER ◽  
M. NEWTON ◽  
S.M. FRANCIS ◽  
M. GLEESON ◽  
C. BARNES

X-ray photoelectron diffraction studies of this alloy surface have been carried out and indicate that there is a significant expansion of the lattice in the near-surface region due to the high concentration of Pd in layer 2. Preliminary single scattering calculations lend support to this proposal for the surface structure, and place this expansion in the subsurface mainly between layers 2 and 3.


Author(s):  
Н.М. Богатов ◽  
Л.Р. Григорьян ◽  
А.И. Коваленко ◽  
М.С. Коваленко ◽  
Ф.А. Колоколов ◽  
...  

Irradiation with low-energy protons leads to a change in the electrophysical, optical, and other properties of the surface region of semiconductor structures, which creates additional possibilities for modifying semiconductor devices. The work is devoted to the study of the effect of radiation defects created by low-energy protons at a sample temperature of 83 K on the properties of two-sided silicon photovoltaic structures with a diffusion n^+-p junction. Samples of n^+-p-p^+ type were irradiated with a flux of protons with an energy of 40 keV or 180 keV and a dose of 1015 cm^-2. To explain the observed regularities in the variation of the parameters of the current-voltage characteristics and the transmission coefficients, the distribution of the average number of interstitial silicon, vacancies, divacancies, and disordering regions created under these conditions on the unit projective path length by one proton in the diffusion layer and the space charge region of the n^+-p junction was calculated. It is shown that protons with an initial energy of 40 keV predominantly change the physical properties of a layer with a high concentration of donors, and protons with an initial energy of 180 keV are properties of the space-charge region in a layer containing acceptors. The number of radiation defects in the maximum spatial distribution in the n-region is much smaller than in the p-region.


Author(s):  
Д.А. Кудряшов ◽  
А.С. Гудовских ◽  
А.А. Максимова ◽  
А.И. Баранов ◽  
А.В. Уваров ◽  
...  

The possibility of evaluation the degree of damage to the near-surface layer of p-type silicon using a selective contact based on MoOx/p-Si is shown. A strong sensitivity of the current-voltage characteristics to the states on the silicon surface formed during the deposition of silicon oxide by magnetron sputtering is demonstrated.


2001 ◽  
Vol 703 ◽  
Author(s):  
A. Meldrum ◽  
K.S. Beaty ◽  
M. Lam ◽  
C.W. White ◽  
R.A. Zuhr ◽  
...  

ABSTRACTIon implantation and thermal processing were used to create a layer of Co nanoclusters embedded in the near-surface region of single-crystal sapphire. The Co nanoparticles ranged in size from 2-20 nm and were crystallographically aligned with the host sapphire. Specimens were irradiated with Xe and Pt ions, and the microstructural evolution of the nanoclusters was investigated by transmission electron microscopy. With increasing Pt or Xe ion dose, the Co nanoparticles lost their initially excellent faceting, although they remained crystalline. The host Al2O3 became amorphous and the resulting microstructure consisted of a buried amorphous layer containing the still-crystalline Co nanoparticles. EDS mapping and electron diffraction were used to determine the distribution of the implanted species, and the magnetic properties of the composite were measured with a SQUID magnetometer. The results show that ion beams can be applied to modify and control the properties of ferromagnetic nanocomposites, and, combined with lithographic techniques, will find applications in exercising fine-scale spatial control over the properties of magnetic materials.


Sign in / Sign up

Export Citation Format

Share Document