n2 plasma
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 49)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
O. G. Devoino ◽  
A. V. Gorbunov ◽  
V. A. Gorbunova ◽  
A. S. Volod’ko ◽  
V. A. Koval ◽  
...  

One of the main trends in the field of improving the modern technologies of thermal spraying, including plasma one, for functional ceramic coatings formation is the reducing the energy consumption of the process. In this regard, one of the important directions for improving these technologies is the development of their new versions, using the principle of adding inexpensive fuel-oxidizer mixtures based on hydrocarbons with air. This type of plasma-fuel type of spraying will be promising for application at the present time, first of all, in order to obtain refractory functional coatings. For this purpose, we investigated the opportunity for upgrading an industrial unit/system for plasma spraying of ceramic powder materials with arc plasma torch of 25–40 kW power by the use of experimental variant of a fuel gas-vortex intensifier. The thermodynamic assessment of possible parameters of the generated mixed flow after the torch with this fuel intensifier was carried out to estimate the applicability of this system to optimize the spraying of oxide and carbide coatings (based on the examples of Al2O3, Cr3C2 and other powders). The analysis of possible parameters of the produced flow after the torch with intensifier was performed for the cases of main C–H–O–N–Ar–Me (Me = Al, Cr) systems and additional C–H–O–Al-system to assess the potential of this system to modify the technology of oxide and carbide ceramic coatings formation. New regimes, which were analyzed in our research as the simulants of Al2O3 spraying, surpass on calculated energy efficiency characteristics (by 10–20 %) one of the new prospective spraying methods with (СO2+СH4)-plasma, as well as the conventional method of powder heating during the spraying with N2-plasma. The case of our proposed fuel assisted process (FA-APS) with liquefied petroleum gas (LPG) fuel for the heating of ceramic powders (especially, Al2O3) demonstrates the advantage of the process (in particular, on the energy efficiencies and energy consumption) in a comparison with the conventional regimes of APS of the powders (in N2 plasma of the standard torch). For the variants of the FA-APS with Al2O3 and Cr3C2 feedstock powders it was established to be potentially possible to obtain (at the moderate values of total electric energy consumption for the torch and auxiliary equipment, – near 1.8 and 1.0 kWh/(kg of product)) such high level of the process productivity on the final product as approximately 17 and 28 kg/h, respectively; at the values of required power of the torch:  28.2 and  22.3 kW.


Author(s):  
zhongyang Ma ◽  
Hongmei Sun ◽  
Huan Zheng ◽  
Yanjun Zhao ◽  
Siyuan Sui ◽  
...  

Abstract The application of aluminum is often limited by low hardness, and plasma nitriding can make it have excellent mechanical property. The purpose of this study is to nitride the aluminum surface by non-thermal transferred arc plasma technology. During the plasma nitriding process, the maximum effective value of output current is about 390 mA and the overall temperature of the samples is much lower than the solidus temperature. It is found that the microstructure and mechanical properties of the aluminum surface are improved by adding hydrogen into the nitrogen plasma. Compared with the surface treated by pure N2 plasma, the particle size of aluminum surface treated by N2/H2 plasma is smaller. The surface hardness of aluminum is nearly doubled after being treated in 6.0 vol%H2 + 94.0 vol%N2 atmosphere.


2021 ◽  
pp. 152191
Author(s):  
H. Mehdi ◽  
F. Réveret ◽  
C. Robert-Goumet ◽  
L. Bideux ◽  
B. Gruzza ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1181
Author(s):  
Mateja Kert ◽  
Petra Forte Tavčer ◽  
Aleš Hladnik ◽  
Kosta Spasić ◽  
Nevena Puač ◽  
...  

Cotton fabric was exposed to low-pressure capacitively coupled plasma to enhance the adsorption and adhesion of fragrance microcapsules (FCM). Two plasma-forming gases, namely oxygen (O2) and nitrogen (N2), were investigated. The untreated and plasma-treated samples were investigated for their morphological changes by scanning electron microscopy (SEM), mechanical properties (breaking force, elongation, and flexural rigidity), and wicking properties. The cotton samples were functionalized with FCM and the effect of plasma pretreatment on the adsorption and adhesion of FCM was evaluated using SEM, air permeability, fragrance intensity of unwashed and washed cotton fabrics, and Fourier transform infrared spectroscopy (FTIR). The results show that the plasma containing either of the two gases increased the wicking of the cotton fabric and that the O2 plasma caused a slight etching of the fibers, which increased the tensile strength of the cotton fabric. Both plasma gases caused changes that allowed higher adsorption of FCM. However, the adhesion of FCM was higher on the cotton treated with N2 plasma, as evidenced by a strong fragrance of the functionalized fabric after repeated washing.


Author(s):  
Liangxing Hu ◽  
Simon Chun Kiat Goh ◽  
Jing Tao ◽  
Yu Dian Lim ◽  
Peng Zhao ◽  
...  
Keyword(s):  

2021 ◽  
pp. 160509
Author(s):  
Xinghui Liu ◽  
Ruinian Hua ◽  
Jinhai Niu ◽  
Zhenyi Zhang ◽  
Jialiang Zhang

Author(s):  
Sean Kelly ◽  
Alex van de Steeg ◽  
Ashley Hughes ◽  
Gerard J Van Rooij ◽  
Annemie Bogaerts

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1534
Author(s):  
Shun-Kai Yang ◽  
Soumen Mazumder ◽  
Zhan-Gao Wu ◽  
Yeong-Her Wang

In this paper, we have demonstrated the optimized device performance in the Γ-shaped gate AlGaN/AlN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) by incorporating aluminum into atomic layer deposited (ALD) HfO2 and comparing it with the commonly used HfO2 gate dielectric with the N2 surface plasma treatment. The inclusion of Al in the HfO2 increased the crystalline temperature (~1000 °C) of hafnium aluminate (HfAlOX) and kept the material in the amorphous stage even at very high annealing temperature (>800 °C), which subsequently improved the device performance. The gate leakage current (IG) was significantly reduced with the increasing post deposition annealing (PDA) temperature from 300 to 600 °C in HfAlOX-based MOS-HEMT, compared to the HfO2-based device. In comparison with HfO2 gate dielectric, the interface state density (Dit) can be reduced significantly using HfAlOX due to the effective passivation of the dangling bond. The greater band offset of the HfAlOX than HfO2 reduces the tunneling current through the gate dielectric at room temperature (RT), which resulted in the lower IG in Γ-gate HfAlOX MOS-HEMT. Moreover, IG was reduced more than one order of magnitude in HfAlOX MOS-HEMT by the N2 surface plasma treatment, due to reduction of N2 vacancies which were created by ICP dry etching. The N2 plasma treated Γ-shaped gate HfAlOX-based MOS-HEMT exhibited a decent performance with IDMAX of 870 mA/mm, GMMAX of 118 mS/mm, threshold voltage (VTH) of −3.55 V, higher ION/IOFF ratio of approximately 1.8 × 109, subthreshold slope (SS) of 90 mV/dec, and a high VBR of 195 V with reduced gate leakage current of 1.3 × 10−10 A/mm.


Sign in / Sign up

Export Citation Format

Share Document