Topography of Si(111): Clean Surface Preparation and Silicon Molecular Beam Epitaxy

1989 ◽  
Vol 159 ◽  
Author(s):  
R. T. Tung ◽  
F. Schrey ◽  
D. J. Eaglesham

ABSTRACTLine defects at the interfaces of epitaxial silicide layers grown at room temperature on Si(111) are found to correspond to steps on the original surface. This has enabled the examination, by transmission electron microscopy, of the topography of large areas of the Si surface after various treatments. Methods for removal of surface oxide and carbide are compared. Silicon molecular beam epitaxy (MBE) is shown to occur via step-flow mechanism at high temperatures, and through nucleation and growth of islands on terraces at low temperatures.

1999 ◽  
Vol 595 ◽  
Author(s):  
H. Zhou ◽  
F. Phillipp ◽  
M. Gross ◽  
H. Schröder

AbstractMicrostructural investigations on GaN films grown on SiC and sapphire substrates by laser induced molecular beam epitaxy have been performed. Threading dislocations with Burgers vectors of 1/3<1120>, 1/3<1123> and [0001] are typical line defects, predominantly the first type of dislocations. Their densities are typically 1.5×1010 cm−2 and 4×109 cm−2 on SiC and sapphire, respectively. Additionally, planar defects characterized as inversion domain boundaries lying on {1100} planes have been observed in GaN/sapphire samples with an inversion domain density of 4×109 cm−2. The inversion domains are of Ga-polarity with respect to the N-polarity of the adjacent matrix. However, GaN layers grown on SiC show Ga-polarity. Possible reasons for the different morphologies and structures of the films grown on different substrates are discussed. Based on an analysis of displacement fringes of inversion domains, an atomic model of the IDB-II with Ga-N bonds across the boundary was deduced. High resolution transmission electron microscopy (HRTEM) observations and the corresponding simulations confirmed the IDB-II structure determined by the analysis of displacement fringes.


1993 ◽  
Vol 8 (11) ◽  
pp. 2753-2756 ◽  
Author(s):  
L.B. Rowland ◽  
R.S. Kern ◽  
S. Tanaka ◽  
Robert F. Davis

Single-crystal epitaxial films of cubic β(3C)–SiC(111) have been deposited on hexagonal α(6H)–SiC(0001) substrates oriented 3–4° toward [1120] at 1050–1250 °C via gas-source molecular beam epitaxy using disilane (Si2H6) and ethylene (C2H4). High-resolution transmission electron microscopy revealed that the nucleation and growth of the β(3C)–SiC regions occurred primarily on terraces between closely spaced steps because of reduced rates of surface migration at the low growth temperatures. Double positioning boundaries were observed at the intersections of these regions.


Author(s):  
S.K. Streiffer ◽  
C.B. Eom ◽  
J.C. Bravman ◽  
T.H. Geballet

The study of very thin (<15 nm) YBa2Cu3O7−δ (YBCO) films is necessary both for investigating the nucleation and growth of films of this material and for achieving a better understanding of multilayer structures incorporating such thin YBCO regions. We have used transmission electron microscopy to examine ultra-thin films grown on MgO substrates by single-target, off-axis magnetron sputtering; details of the deposition process have been reported elsewhere. Briefly, polished MgO substrates were attached to a block placed at 90° to the sputtering target and heated to 650 °C. The sputtering was performed in 10 mtorr oxygen and 40 mtorr argon with an rf power of 125 watts. After deposition, the chamber was vented to 500 torr oxygen and allowed to cool to room temperature. Because of YBCO’s susceptibility to environmental degradation and oxygen loss, the technique of Xi, et al. was followed and a protective overlayer of amorphous YBCO was deposited on the just-grown films.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


2008 ◽  
Vol 104 (9) ◽  
pp. 093914 ◽  
Author(s):  
X. Y. Li ◽  
S. X. Wu ◽  
L. M. Xu ◽  
Y. J. Liu ◽  
X. J. Xing ◽  
...  

2016 ◽  
Vol 30 (20) ◽  
pp. 1650269 ◽  
Author(s):  
Thi Giang Le ◽  
Minh Tuan Dau

High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge[Formula: see text]Mn[Formula: see text]/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.


1989 ◽  
Vol 160 ◽  
Author(s):  
Y.H. Lee ◽  
R.P. Burns ◽  
J.B. Posthill ◽  
K.J. Bachmann

AbstractThe growth of Mo overtayers and Mo-Ni multilayers on single crystal Ni(001) substrates is described. The nucleation and growth processes of these thin films were analyzed by LEED, XPS, AES and SEM and High Resolution AES investigations without breaking vacuum. Growth of Mo-Ni multilayer heterostructures on Ni(001) with ≈20Å periodicity is possible at low temperature (≈200 °C). At high temperature (≈550 °C) the growth proceeds by the Volmer-Weber mechanism preventing the deposition of small period multilayers. Annealing experiments on ultra-thin (<20Å) Mo overiayers deposited at 200 °C show an onset of interdiffusion at ≈ 550°C coupled to the generation of a new surface periodicity.


2006 ◽  
Vol 955 ◽  
Author(s):  
Mo Ahoujja ◽  
S Elhamri ◽  
M Hogsed ◽  
Y. K. Yeo ◽  
R. L. Hengehold

ABSTRACTDeep levels in Si doped AlxGa1−xN samples, with Al mole fraction in the range of x = 0 to 0.30, grown by radio-frequency plasma activated molecular beam epitaxy on sapphire substrates were characterized by deep level transient spectroscopy (DLTS). DLTS measurements show two significant electron traps, P1 and P2, in AlGaN at all aluminum mole fractions. The electron trap, P2, appears to be a superposition of traps A and B , both of which are observed in GaN grown by various growth techniques and are thought to be related to VGa-shallow donor complexes. Trap P1 is related to line defects and N-related point defects. Both of these traps are distributed throughout the bulk of the epitaxial layer. An additional trap P0 which was observed in Al0.20Ga0.80N and Al0.30Ga0.70N is of unknown origin, but like P1 and P2, it exhibits dislocation-related capture kinetics. The activation energy measured from the conduction band of the defects is found to increase with Al mole content, a behavior consistent with other III-V semiconductors.


MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2907-2916 ◽  
Author(s):  
Shulong Lu ◽  
Shiro Uchida

ABSTRACTWe studied the InGaP/GaAs//InGaAsP/InGaAs four-junction solar cells grown by molecular beam epitaxy (MBE), which were fabricated by the novel wafer bonding. In order to reach a higher conversion efficiency at highly concentrated illumination, heat generation should be minimized. We have improved the device structure to reduce the thermal and electrical resistances. Especially, the bond resistance was reduced to be the lowest value of 2.5 × 10-5 Ohm cm2 ever reported for a GaAs/InP wafer bond, which was obtained by the specific combination of p+-GaAs/n-InP bonding and by using room-temperature wafer bonding. Furthermore, in order to increase the short circuit current density (Jsc) of 4-junction solar cell, we have developed the quality of InGaAsP material by increasing the growth temperature from 490 °C to 510 °C, which leads to a current matching. In a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was achieved.


Sign in / Sign up

Export Citation Format

Share Document