Epitaxial Growth of BaF2 on Semiconductor Substrates

1982 ◽  
Vol 18 ◽  
Author(s):  
J. M. Phillips ◽  
L. C. Feldman ◽  
J. M. Gibson ◽  
M. L. Mcdonald

We used Rutherford backscattering and channeling and transmission electron microscopy (TEM) to study the epitaxial growth of BaF2 vacuum deposited onto InP(100), InP(111), Ge(100) and Ge(111). We observed no epitaxy in BaF2 on Ge(100). The other three cases all show epitaxy, with quality ranging from poor for BaF2 on InP(111) through fair for BaF2 on InP(100) to excellent for BaF2 on Ge(111). Epitaxial quality depends strongly on substrate temperature for BaF2 on Ge(l11). TEM analysis indicates that there are neither misfit dislocations nor coherence at the BaF2–Ge(111) interface in spite of the 9.1% lattice mismatch.

1995 ◽  
Vol 401 ◽  
Author(s):  
P. A. Langjahr ◽  
T. Wagner ◽  
M. RÜhle ◽  
F. F. Lange

AbstractCubic and pseudocubic perovskite films on perovskite substrates are used to study the influence of the lattice mismatch on the epitaxial growth of thin films on substrates of the same structure. For the growth of the films, a metalorganic decomposition route (MOD) using 2-ethylhexanoates and neodecanoates as precursors, was developed. The decomposition of the precursors was investigated with thermogravimetric analysis (TGA) and x-ray diffraction (XRD). The films were spin-coated on (001)-oriented SrTiO3- and LaAlO3-substrates, pyrolyzed and afterwards annealed between 600°C and 1200°C. XRD-nvestigations and conventional transmission electron microscopy (CTEM) show, that epitaxial films with the orientation relationship [100](001) film ║ [100](001) substrate can be grown. With XRD, it could be shown, that not only ternary oxide films (SrZrO3, BaZrO3 and BaCeO3), but also perovskite solid solution films (SrTi0.5Zr0.5O3and BaCe0.5Zr0.5O3) can be prepared. Strong interdiffusion, detected by a shift of the film lattice parameter towards the substrate lattice parameter was found in SrZrO3- and BaZrO3-films on SrTiO3, annealed at temperatures above 1050°C. High resolution electron microscopy (HREM) studies of SrZrO3 on SrTiO3 show that a crystalline semicoherent interface with a periodical array of misfit dislocations is present.


2002 ◽  
Vol 17 (12) ◽  
pp. 3117-3126 ◽  
Author(s):  
Y. L. Qin ◽  
C. L. Jia ◽  
K. Urban ◽  
J. H. Hao ◽  
X. X. Xi

The dislocation configurations in SrTiO3 thin films grown epitaxially on LaAlO3 (100) substrates were studied by conventional and high-resolution transmission electron microscopy. Misfit dislocations had, in most cases, a Burgers vector a〈100〉 and line directions of 〈100〉 These dislocations constitute orthogonal arrays of parallel dislocations at the interface, relieving the lattice mismatch between SrTiO3 and LaAlO3. Threading dislocations were found to be the major defects in the films. Two types of threading dislocations with the Burgers vectors a〈100〉?and a〈100〉?were identified. The relations of these threading dislocations with the misfit dislocations were investigated and are discussed in this paper.


1992 ◽  
Vol 275 ◽  
Author(s):  
Hiromi Takahashi ◽  
Norio Homma ◽  
Satoru Okayama ◽  
Tadataka Morishita

ABSTRACTThe interface between an a-axis oriented YBa2Cu3O7-x film and a NdGaO3(110) substrate has been investigated by cross-section transmission electron microscopy (TEM). The orientational relationship between the a-axis oriented film and substrate is YBa2Cu3O7-x[001] / NdGaO3[001]. This preferentially c-axis aligned direction of the YBa2Cu3O7-x film would be caused by a very small lattice mismatch (0.1%) between b(=a) lattice constant of YBa2Cu3O7-x and of the pseudo-cubic sub-lattices in NdGaO3 at a substrate temperature of 750°C. Two kinds of imperfections have been observed in the crystal lattice of YBa2Cu3O7-x near the interface; One is the deviation of YBa2Cu3O7-x [301] from NdGaO3 [111]. The other type is pair dislocations with a positive and negative Burgers vectors in the YBa2Cu3O7-x (103) planes. These two kinds of defects at the interface would be act to reduce the tensile stress within a distance of about l.lnm from the substrate interface.


Author(s):  
M. J. Carr ◽  
J. F. Shewbridge ◽  
T. O. Wilford

Strong solid state bonds are routinely produced between physical vapor deposited (PVD) silver coatings deposited on sputter cleaned surfaces of two dissimilar metal parts. The low temperature (200°C) and short time (10 min) used in the bonding cycle are advantageous from the standpoint of productivity and dimensional control. These conditions unfortunately produce no microstructural changes at or near the interface that are detectable by optical, SEM, or microprobe examination. Microstructural problems arising at these interfaces could therefore easily go undetected by these techniques. TEM analysis has not been previously applied to this problem because of the difficulty in specimen preparation. The purpose of this paper is to describe our technique for preparing specimens from solid state bonds and to present our initial observations of the microstructural details of such bonds.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


1995 ◽  
Vol 401 ◽  
Author(s):  
L. Ryen ◽  
E. Olssoni ◽  
L. D. Madsen ◽  
C. N. L. Johnson ◽  
X. Wang ◽  
...  

AbstractEpitaxial single layer (001) SrTiO3 films and an epitaxial Yba2Cu3O7-x/SrTiO3 multilayer were dc and rf sputtered on (110)rhombohedral LaAIO3 substrates. The microstructure of the films was characterised using transmission electron microscopy. The single layer SrTiO3 films exhibited different columnar morphologies. The column boundaries were due to the lattice mismatch between film and substrate. The boundaries were associated with interfacial dislocations at the film/substrate interface, where the dislocations relaxed the strain in the a, b plane. The columns consisted of individual subgrains. These subgrains were misoriented with respect to each other, with different in-plane orientations and different tilts of the (001) planes. The subgrain boundaries were antiphase or tilt boundaries.The individual layers of the Yba2Cu3O7-x/SrTiO3 multilayer were relatively uniform. A distortion of the SrTiO3 unit cell of 0.9% in the ‘001’ direction and a Sr/Ti ratio of 0.62±0.04 was observed, both in correspondence with the single layer SrTiO3 films. Areas with different tilt of the (001)-planes were also present, within each individual SrTiO3 layer.


1986 ◽  
Vol 64 (10) ◽  
pp. 1369-1373 ◽  
Author(s):  
U. von Sacken ◽  
D. E. Brodie

The structure of polycrystalline Zn3P2 films has been studied for 1- to 2-μm-thick vacuum-deposited films on glass substrates. Transmission electron microscopy and X-ray diffraction techniques have been used to obtain a detailed, quantitative analysis of the film structure. The initial growth consists of small (≤ 10 nm), randomly oriented grains. As the film thickness increases, the growth of crystallites with the {220} planes oriented approximately parallel to the substrate is favoured, and a columnar structure develops along with a highly preferred orientation. This structure has been observed directly by transmission electron microscopy of thin cross sections of the films. The size of the grains at the free surface increases with the film thickness, reaching approximately 200–300 nm when the film is 1 μm thick. The effects of substrate temperature and low-energy (0.5–2 keV) electron bombardment of the film during growth have also been studied. Neither substrate temperature nor electron bombardment appear to have a major effect on the film structure. The primary effect of electron bombardment appears to be the creation of preferred nucleation sites on the substrate.


Sign in / Sign up

Export Citation Format

Share Document