Grain Boundaries in High Thermal Conductivity Aluminum Nitride.

1990 ◽  
Vol 203 ◽  
Author(s):  
Stuart Mckernan ◽  
M. Grant Norton ◽  
C. Barry Carter

ABSTRACTThe benefits of AIN as a substrate material for the electronics packaging industry appear to be limited by the deleterious effects of boundaries in the polycrystalline material. Some observations on different types of boundary in AIN using several complementary techniques are reported.

2018 ◽  
Vol 27 (6) ◽  
pp. 096369351802700
Author(s):  
Tao Huang ◽  
Yimin Yao ◽  
Gang Zhang ◽  
Fanling Meng

With the development of polymer-filled composites, the demand of high thermal conductivity materials is much attractive than ever. However, the process of a common method to improve thermal conductivity of composites is considerably complicated. The aim of this study is to investigate thermal conductivity of epoxy filled silver nanoparticle deposited aluminum nitride nanoparticles with relatively convenient process. We found that the thermal conductivities of composites filled with AlN/Ag nanoparticles are effectively enhanced, which is enormously increased from 0.48 Wm-1K-1(1.88 vol%) to 3.66 Wm-1K-1 (19.54 vol%). This can be ascribed to the bridging connections of silver nanoparticle among aluminum nitride nanoparticles. In addition, the thermal contact resistance of the epoxy composites filler with AlN/Ag nanoparticles is decreased, which is proved by the fitting measured thermal conductivity of epoxy composite with one physical model. We believe the finding has great potential for any microelectronic application.


1990 ◽  
Vol 203 ◽  
Author(s):  
Ellice Y. Luh ◽  
Leonard E. Dolhert ◽  
Jack H. Enloe ◽  
John W. Lau

ABSTRACTCharacteristics such as CTE close to that of silicon, high thermal conductivity, and good dielectric properties make aluminum nitride (AIN) an excellent dielectric for packaging silicon-based high density multichip interconnects. However, there remains many aspects of its behavior that have not been characterized. One such example is the behavior of the various metallizations used within a package. As with A12O3, these metallizations must contribute toward a hermetic seal separating the die from the environment. However, the chemical behavior of the metallization systems used for A12O3 may not be compatible with non-oxide ceramics such as AIN. Consequently, these chemical interactions are investigated in view of the requirements for each application within electronic packages. Hermeticity testing results are also included in the discussion.


1994 ◽  
Vol 38 ◽  
pp. 479-487 ◽  
Author(s):  
O. N. Grigoriev ◽  
S. M. Kushnerenko ◽  
K. A. Plotnikov ◽  
W. Kreher

Recently aluminum nitride (A1N) has been intensively studied as a promising material for production of hybrid integrated circuit substrates because of its high thermal conductivity, high fjexural strength, and nontoxic nature. The estimated theoretical value of its thermal conductivity at room temperature is 320 W/mK, but it is strongly degraded by the introduction of oxygen. The measured values vary from 30 to 260 W/mK, Therefore, in production of this material the reduction of oxygen contamination is of paramount importance.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (6) ◽  
pp. 465-470 ◽  
Author(s):  
Danièle Fournier

In recent years, high thermal conductivity has been found in materials with heterogeneous microstructures, that is, ceramics and films with granular microstructures having different phases. Understanding the thermal conductivities and microstructures of these materials is more difficult, however, than in the case of single-crystal materials because they consist of grains and grain boundaries.


2012 ◽  
Vol 521 ◽  
pp. 101-111 ◽  
Author(s):  
Shyan Lung Chung ◽  
Chun Hung Lai

Aluminum nitride has been acknowledged as an important industrial material because of its unique combination of high thermal conductivity and high electrical resistivity. Although there have been several excellent reviews on the synthesis of aluminum nitride, little has been mentioned on the combustion synthesis of AlN. In this work, the combustion synthesis methods for synthesis of AlN are reviewed and classified according to the phases involved in the reaction, the types of reactants (and additives) used and the design principles for the synthesis processes. Problems critical to combustion synthesis of AlN to obtain products with high product yields and low impurity contents are summarized and discussed.


Sign in / Sign up

Export Citation Format

Share Document