On the Formation of Martensite in In0.77TL0.23.

1990 ◽  
Vol 205 ◽  
Author(s):  
M. Wuttig ◽  
X. Zhou ◽  
S. Nahm ◽  
J. Li

AbstractIt has been proposed that martensite is formed by heterogeneous nucleation and growth or evolves from a precursor. In order to examine these theories, high resolution X-ray diffraction experiments have been performed on In0.77Tl0.23. It is known that the transformation of the alloy is close to second order and tweed has been observed which could be a possible precursor structure. Our experimental results do show precursors but of a different nature: satellites around the 220 Bragg peak have been detected up to 15 degrees above the transformation temperature. They develop reversibly at the angular positions of the product phase. The results are not compatible with the “crest-riding-peridon” model but rather show an equilibrium two phase mixture above the transformation temperature in which the second phase is structurally equal to the product phase. We have also investigated the mechanical response of the high temperature phase and found that both shear ‘elastic constants’ soften. This result can be understood in terms of twin boundary or stacking fault motion.

2014 ◽  
Vol 975 ◽  
pp. 207-212
Author(s):  
Dayse I. dos Santos ◽  
Olayr Modesto Jr. ◽  
Luis Vicente A. Scalvi ◽  
Americo S. Tabata

Metal oxide nanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first process produces directly a two-phase material, while the sol-gel powder never showed second phase below 600°C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.


1996 ◽  
Vol 52 (a1) ◽  
pp. C364-C364
Author(s):  
J. A. Guevara ◽  
S. L. Cuffini ◽  
Y. P. Mascarenhas ◽  
P. de la Presa ◽  
A. Ayala ◽  
...  

2018 ◽  
Vol 24 (S1) ◽  
pp. 2248-2249
Author(s):  
M. Ramírez-Cardona ◽  
M.P. Falcón-León ◽  
G. Luis-Raya ◽  
G. Mejía-Hernández ◽  
R. Arceo ◽  
...  

2008 ◽  
Vol 64 (5) ◽  
pp. 558-566 ◽  
Author(s):  
Anna Gagor ◽  
Maciej Wojtaś ◽  
Adam Pietraszko ◽  
Ryszard Jakubas

[(CH3)3PH]3[Sb2Cl9] experiences four phase transitions which were found by means of calorimetry, thermogravimetry and X-ray diffraction. The crystal structure was solved in the space group P63/mmc at 382 K (phase I), Pnam at 295 K (phase II) and Pna21 at 175 K (phase V). We observed an unusual increase in symmetry from the monoclinic to the orthorhombic form at the IV\rightarrowV transition. The parent hexagonal high-temperature phase I consists of highly disordered [(CH3)3PH]+ cations and [Sb2Cl9]3− anions with an octahedral environment of SbIII. The transition from phases I to II is associated with the ordering of [(CH3)3PH]+ cations. Moreover, the successive transformations from phases I to V are related to the change in the arrangement of Cl atoms in [Sb2Cl9]3− anions from the discrete `face-sharing bioctahedra' (phase I) to two corner-sharing square pyramids. A mechanism for the phase transitions is proposed. It is observed that weak C—H...Cl interactions are responsible for the structure arrangement in low-temperature phases.


2001 ◽  
Vol 16 (8) ◽  
pp. 2251-2255 ◽  
Author(s):  
J. W. Nowok ◽  
J. P. Kay ◽  
R. J. Kulas

The linear thermal-expansion coefficients of yttrium silicate Y2SiO5, [Y2(SiO4)O] were measured in the temperature range from 20 to 1400 °C using x-ray diffraction. The anomalous behavior of thermal expansion was observed above Tc = 850 °C and was attributed to the displacive phase transformation. The transformation was reversible and resulted from the local order °C the compositional disorder and local fluctuation in the elastic free energy constrained a secondary transformation related to the polymorphic twin transformation. This created an additional peak in x-ray diffraction patterns at 2 's intensity. The characteristic of phase transformation both on heating and on cooling of the sample was also investigated using the differential thermal analysis method. The thermogravimetric technique did not indicate on a change of weight at Tc.


2013 ◽  
Vol 820 ◽  
pp. 71-74
Author(s):  
Xiao Hua Wang ◽  
Wei He ◽  
Ling Min Zeng

Binary compound Y3Fe29cannot be directly formed by rare earth Y and Fe and the third element M (non-iron transition elements) must be introduced to form ternary compound Y3(Fe,M)29. In this work, six alloys with compositions of the Y3Fe29-xCrx(x=1,2,3,4,5,6) were prepared and investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and differential thermal analysis (DTA). The study on the thermal stability of these compounds points to that the compoundY3(Fe,Cr)29is a high temperature phase and exists above 1100K. The alloys with single-phase of Y3(Fe,Cr)29was decomposed into Y2(Fe,Cr)17and Y(Fe,Cr)12annealed at high temperature 1100K.


2007 ◽  
Vol 558-559 ◽  
pp. 943-947 ◽  
Author(s):  
E. Otterstein ◽  
R. Nicula ◽  
J. Bednarčík ◽  
M. Stir ◽  
E. Burkel

Quasicrystals are aperiodic long-range ordered solids with a high potential for many modern applications. Interest is nowadays paid to the development of economically viable large-scale synthesis procedures of quasicrystalline materials involving solid-state transformations. The kinetics of the high-temperature phase transition from the complex ω-phase to the icosahedral quasicrystalline (iQC) ψ-phase in AlCuFe nanopowders was here examined by in-situ time-resolved X-ray diffraction experiments using synchrotron radiation. In-situ XRD experiments will allow insight on the influence of uniaxial applied pressure on the kinetics of phase transitions leading to the formation of single-phase QC nanopowders and further contribute to the optimization of sintering procedures for nano-quasicrystalline AlCuFe alloy powders.


2020 ◽  
Author(s):  
Chloe Coates ◽  
Claire A. Murray ◽  
Hanna Boström ◽  
Emily Reynolds ◽  
Andrew Goodwin

Cadmium cyanide, Cd(CN)<sub>2</sub>, is a flexible coordination polymer best studied for its strong and isotropic negative thermal expansion (NTE) effect. Here we show that this NTE is actually X-ray exposure dependent: Cd(CN)<sub>2</sub> contracts not only on heating but also on irradiation by X-rays. This behaviour contrasts that observed in other beam-sensitive materials, for which X-ray exposure drives lattice expansion. We call this effect ‘negative X-ray expansion’ (NXE) and suggest its origin involves an interaction between X-rays and cyanide ‘flips’; in particular, we rule out local heating as a possible mechanism. Irradiation also affects the nature of a low-temperature phase transition. Our analysis resolves discrepancies in NTE coefficients reported previously on the basis of X-ray diffraction measurements, and we establish the ‘true’ NTE behaviour of Cd(CN)<sub>2</sub> across the temperature range 150–750 K. The interplay between irradiation and mechanical response in Cd(CN)<sub>2</sub> highlights the potential for exploiting X-ray exposure in the design of functional materials.


Sign in / Sign up

Export Citation Format

Share Document