Characterization of Interfacial Structure in Large Lattice Mismatch Heteroepitaxy: Ag/Si (111)

1990 ◽  
Vol 209 ◽  
Author(s):  
D.C. McKenna ◽  
G.-C. Wang ◽  
K. Rajan

ABSTRACTThe interfacial structure of a large lattice mismatched (˜25%) (111) Ag-Si system was studied by using transmission electron diffraction (SADP - Selected Area Diffraction Pattern). The epitaxial films of Ag (600–1200Å) were grown by MBE on flat Si(111) and misoriented Si(1ll) surfaces. We have examined the interfacial structures of the Ag on 2° misoriented Si(111) using diffraction patterns of cross sectional view. Through a detail analysis of thelocation and shape of the diffraction spots, we can determine the epitaxial relationship between Ag and Si, the small tilt angle of Ag(111) planes withrespect to the misoriented Si(111), the period of the finite terrace size of the misoriented Si substrate, and the size of the ordered region in the Ag film. The O-lattice analysis developed by Bollmann has beenapplied to this interface andthe result is compared with the SADP observation.

1996 ◽  
Vol 426 ◽  
Author(s):  
S. Niki ◽  
T. Kurafuji ◽  
P. J. Fons ◽  
I. Kim ◽  
O. Hellman ◽  
...  

AbstractCuInSe2 (CIS) epitaxial layers have been grown on both GaAs (001) and In0.29Ga0.71 As pseudo lattice-matched substrates by molecular beam epitaxy, and characterized for device applications. Despite a large lattice mismatch of Δa/a˜2.2%, epitaxial growth of CuInSe2 has been demonstrated on GaAs (001) showing their film properties strongly dependent on the Cu/In ratio. In-rich films had a large number of twins on {112} planes, and were found to be heavily compensated. On the other hand, Cu-rich films showed distinct photoluminescence emissions indicating significantly higher film quality in comparison with In-rich films. Two dimensional reciprocal x-ray intensity area mapping and cross-sectional transmission electron microscopy showed the formation of an interfacial layer in the vicinity of the CuInSe2/GaAs interface resulting from the strain-induced interdiffusion between CuInSe2 and GaAs. Reduction in lattice mismatch to Δa/a˜0.2% by using In0.29Ga0.71As pseudo lattice-matched substrates made possible the growth of high quality CuInSe2 with predominant free exciton emissions in their photoluminescence spectra and with residual defect densities of as low as p˜l×1017cm-3 implying the growth of device quality CuInSe2 epitaxial films.


2005 ◽  
Vol 891 ◽  
Author(s):  
Junqing Q. Xie ◽  
J. W. Dong ◽  
A. Osinsky ◽  
P. P. Chow ◽  
Y. W. Heo ◽  
...  

ABSTRACTZnO thin films have been epitaxially grown on r-plane sapphire by RF-plasma-assisted molecular beam epitaxy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies indicate that the epitaxial relationship between ZnO and r-plane sapphire is (1120)ZnO // (1102)sapphire and [0001]ZnO // [1101]sapphire. Atomic force microscopy measurements reveal islands extended along the sapphire [1101] direction. XRD omega rocking curves for the ZnO (1120) reflection measured either parallel or perpendicular to the island direction suggest the defect density anisotropy along these directions. Due to the small lattice mismatch along the ZnO [0001] direction, few misfit dislocations were observed at the ZnO/Al2O3 interface in the high-resolution cross-sectional TEM image with the zone axis along the ZnO [1100] direction.


1992 ◽  
Vol 285 ◽  
Author(s):  
Rina Chowdhury ◽  
X. Chen ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTWe have successfully deposited multilayer Si/ITiN/Si(100) epitaxial heterostructures at a substrate temperature of 600°C in a chamber maintained at a vacuum of ∼10−7 torr using pulsed laser (KrF: λ = 248 nm, τ = 25 ns) deposition. This silicon-on-conductor device configuration has potential applications in three-dimensional integrated circuits and radiation hard devices.The two interfaces were quite sharp without any indication of interfacial reaction between them. The epitaxial relationship was found to be <100> Si II<100> TiN II<100> Si. In the plane, four unit cells of TiN matched with three unit cells of silicon with less than 4.0% misfit. This domain matching epitaxy provides the mechanism of epitaxial growth in systems with large lattice mismatch. Energetics and growth characteristics of such domain matching epitaxy in the high lattice mismatch Si/TiN/Si(100) system and possible device implications are discussed.


2001 ◽  
Vol 668 ◽  
Author(s):  
R.G. Dhere ◽  
D.S. Albin ◽  
S.E. Asher ◽  
H.R. Moutinho ◽  
D. Compton ◽  
...  

ABSTRACTIntermixing at the CdS/CdTe interface is considered crucial for the performance of CdTe-based solar cells. High-efficiency devices have been fabricated in spite of large lattice mismatch between CdS and CdTe. Intermixing and formation of CdSxTe1−x alloys in present-generation devices result from high-temperature CdTe deposition and post-deposition CdCl2 treatment. In this paper, we present our work on preparation of CdSxTe1−x-alloy powders and films. In this process, the CdS and CdTe powders are sized and mixed, isostatically pressed into a bar, sealed into closed-quartz ampoules, annealed at temperatures >1000°C, and water quenched. X-ray diffraction (XRD) analysis showed that they contained only distinct phases on S-rich and Te-rich sides of the phase diagram. Recently, two new batches of CdSxTe1−x material, produced by an improved process have been obtained (x =0.71 and x= 0.35 in CdSxTe1−x alloy). Initial XRD results from the films deposited by close spaced sublimation (CSS) using these powders reveal that both samples of bulk powders (prior to CSS deposition) are single-phase and demonstrate CdS-like characteristics (hexagonal). We have deposited CdSxTe1−x-alloy films using these powders. These alloy powders evaporate more congruently as opposed to mixed powders of CdS and CdTe. We will also present results on the structural properties of thin CdSxTe1−x alloy films deposited using these powders by CSS.


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Hua Li ◽  
Jianping Sang ◽  
Chang Liu ◽  
Hongbing Lu ◽  
Juncheng Cao

AbstractSingle crystalline ZnO film is grown on GaN/sapphire (0001) substrate by molecular beam epitaxy. Ga2O3 is introduced into the ZnO/GaN heterostructure intentionally by oxygen-plasma pre-exposure on the GaN surface prior to ZnO growth. The crystalline orientation and interfacial microstructure are characterized by X-ray diffraction and transmission electron microscopy. X-ray diffraction analysis shows strong c-axis preferred orientation of the ZnO film. Cross-sectional transmission electron microscope images reveal that an additional phase is formed at the interface of ZnO/GaN. Through a comparison of diffraction patterns, we confirm that the interface layer is monoclinic Ga2O3 and the main epitaxial relationship should be $$ (0001)_{ZnO} \parallel (001)_{Ga_2 O_3 } \parallel (0001)_{GaN} $$ and $$ [2 - 1 - 10]_{ZnO} \parallel [010]_{Ga_2 O_3 } \parallel [2 - 1 - 10]_{GaN} $$.


1992 ◽  
Vol 280 ◽  
Author(s):  
Tsvetanka S. Zheleva ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTThe characteristics of epitaxial growth in large lattice mismatch TiN/Si and TiN/GaAs systems are analyzed. The epitaxial growth in these large mismatch systems is modelled in terms of various energy contributions to the epilayer. The new mode of growth, defined as domain epitaxial growth in these high mismatch systems is maintained by the formation of misfit dislocations at repeated intervals. The epitaxial relationship within the domain consists of n interplanar distances of the overlayer film closely matching with m interplanar distances of the substrate, where m and n are integers. The interfacial energy is found to be a very important term in determining the orientation relationships. The results of the model calculations are compared with the experimental observations.


1996 ◽  
Vol 11 (12) ◽  
pp. 3152-3157 ◽  
Author(s):  
K. Terabe ◽  
A. Gruverman ◽  
Y. Matsui ◽  
N. Iyi ◽  
K. Kitamura

Crystallization behavior, defects, and interface structures of sol-gel derived LiNbO3 films on three kinds of substrates were examined. The nucleation was found to occur epitaxially at the interface between the film and the substrate. The continuous film is formed by coalescence of the island-like crystallites. When sapphire substrate is used, which has large lattice mismatch with the LiNbO3, the resulting film contains a large amount of micropores, twin structures, and misfit dislocations. On the other hand, while LiTaO3 and 5% MgO-doped LiNbO3 substrates with smaller mismatch are used as substrates, the films show no evidence of the formation of dislocations and twins. The film on 5% MgO-doped LiNbO3 substrate shows better optical waveguiding property.


1998 ◽  
Vol 535 ◽  
Author(s):  
V. Gopal ◽  
E.-H. Chen ◽  
E. P. Kvam ◽  
J. M. Woodall

AbstractWe have investigated the direct growth of narrow-gap InAs on wide-gap GaP by Molecular Beam Epitaxy. InAs and GaP have the largest mismatch among all the III-arsenides and the III-phosphides – 11%. A perfect epitaxial relationship is maintained between the InAs and the GaP despite the large lattice mismatch. Moreover, a reproducible defect structure with unique electronic properties is developed at the heterointerface. A point defect associated with the intersection of 90° misfit dislocations may act as an ordered, structural dopant. This dopant is fully ionized with a constant, high sheet carrier density of 1013 cm−2, independent of InAs layer thickness, and exhibits no freeze out even at 5 K. Device applications for such a system include temperature insensitive Hall sensors. We have also demonstrated high electron mobilities (over 10000 cm2/V-sec) in nominally undoped thick InAs layers grown on GaP. The explanation of this effect is presented to emphasize the exciting possibilities of band gap engineering in this system.


1988 ◽  
Vol 116 ◽  
pp. 465-470 ◽  
Author(s):  
A. S. Yapsir ◽  
C.-H. Choi ◽  
S. N. Yang ◽  
T.-M. Lu ◽  
M. Madden ◽  
...  

AbstractSingle crystal Al(111) films were grown on Si(111) surface at room temperature under a conventional vacuum condition using the partially ionized beam (PIB) deposition technique. The Al films were deposited with an ion to atom ratio of about 0.3% and an acceleration voltage of 1 kV. Transmission electron microscopy (TEM) analysis showed that the as-deposited films were single crystal with certain density of dislocation networks. These dislocations disappeared following a heat treatment at 450°C for 30 min. From X-ray diffraction and TEM patterns, it was observed that the Al(111) was aligned to the substrate with Al<1l0>//Si<1l0>. Possible mechanisms of the PIB epitaxial growth and a novel structural defect that is unique to this large lattice mismatch system are discussed.


1986 ◽  
Vol 90 ◽  
Author(s):  
N. Otsuka ◽  
Y. E. Ihm ◽  
K. A. Harris ◽  
J. W. Cook ◽  
J. F. Schetzina

ABSTRACTA transmission electron microscope study of HqTe-CdTe multilayer structures grown by molecular beam epitaxy (MBE) on (100) Cd Zn Te is presented. Both cross-sectional and plain-view observations show highly reaular structures of superlattices and tunnel structures. Dislocation densities estimated by Plan-view observations are of the order of 104 cm−2 in these multilayer structures. A quantitative characterization of interface sharpness of superlattices has been carried out by intensity analysis of satellite spots in electron diffraction patterns. It is shown that interfaces in these superlattices are hichly abrupt with a width of one or two monolayers. These observations suggest the effectiveness of the use of lattice-matched substrates to qrow high quality HgTe-CdTe multilayer structures.


Sign in / Sign up

Export Citation Format

Share Document