Growth of a-plane ZnO Thin Films on r-plane Sapphire by Plasma-assisted MBE

2005 ◽  
Vol 891 ◽  
Author(s):  
Junqing Q. Xie ◽  
J. W. Dong ◽  
A. Osinsky ◽  
P. P. Chow ◽  
Y. W. Heo ◽  
...  

ABSTRACTZnO thin films have been epitaxially grown on r-plane sapphire by RF-plasma-assisted molecular beam epitaxy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies indicate that the epitaxial relationship between ZnO and r-plane sapphire is (1120)ZnO // (1102)sapphire and [0001]ZnO // [1101]sapphire. Atomic force microscopy measurements reveal islands extended along the sapphire [1101] direction. XRD omega rocking curves for the ZnO (1120) reflection measured either parallel or perpendicular to the island direction suggest the defect density anisotropy along these directions. Due to the small lattice mismatch along the ZnO [0001] direction, few misfit dislocations were observed at the ZnO/Al2O3 interface in the high-resolution cross-sectional TEM image with the zone axis along the ZnO [1100] direction.

1992 ◽  
Vol 280 ◽  
Author(s):  
A. K. Ballal ◽  
L. Salamanca-Riba ◽  
D. L. Partin

ABSTRACTIn this paper we investigate the defect morphology and misfit strain in InAs films grown on (100) InP substrates using two-step metal organic chemical vapor deposition (MOCVD). High quality InAs films were obtained despite the 3.2% lattice-mismatch between the InAs film and the InP substrate. Cross-sectional and plan-view transmission electron microscopy has been used to characterize the ∼3μm thick InAs films. Almost all the lattice mismatch is accomodated by an orthogonal array of pure edge Lomer dislocations which are favored over the 60° type since they are more efficient in relieving misfit strain. In addition to misfit dislocations, threading dislocations were observed propagating through the film. Most of the threading dislocations were 60° type dislocations along the < 211 > and < 110 > directions on inclined {111} planes. The threading dislocations originate from island coalescence during film growth. High resolution electron microscopy shows the epitaxial relationship between the film and the substrate and reveals an abrupt and sharp interface with periodic dislocation cores.


1997 ◽  
Vol 3 (S2) ◽  
pp. 487-488
Author(s):  
W.L. Zhou ◽  
P. Pirouz

GaN has been intensively studied because of its potential applications for the fabrication of blue- or ultraviolet-light emitting devices. Sapphire (α-Al2O3) is generally used as the substrate for growth of GaN film. However, the large lattice mismatch between GaN and Al2O3is a possible cause of the large defect density in the GaN films. Consequently, alternative substrates are being studied with the aim of growing films of lesser defect densities and improved opto-electronic properties. In this paper, we report a transmission electron microscopy (TEM) study of a GaN film grown on cubic SiC which has been obtained by carbonization of the top silicon layer of a SIMOX substrate, i.e. the system GaN/SiC/Si/SiO2/Si.Cross-sectional TEM specimens were prepared by the conventional sandwich technique with the foil surface normal to the Si[l10] direction. The composite sample was ground and dimpled to a thickness of ∼ 10μm, and subsequently ion thinned to electron transparency.


2002 ◽  
Vol 17 (12) ◽  
pp. 3117-3126 ◽  
Author(s):  
Y. L. Qin ◽  
C. L. Jia ◽  
K. Urban ◽  
J. H. Hao ◽  
X. X. Xi

The dislocation configurations in SrTiO3 thin films grown epitaxially on LaAlO3 (100) substrates were studied by conventional and high-resolution transmission electron microscopy. Misfit dislocations had, in most cases, a Burgers vector a〈100〉 and line directions of 〈100〉 These dislocations constitute orthogonal arrays of parallel dislocations at the interface, relieving the lattice mismatch between SrTiO3 and LaAlO3. Threading dislocations were found to be the major defects in the films. Two types of threading dislocations with the Burgers vectors a〈100〉?and a〈100〉?were identified. The relations of these threading dislocations with the misfit dislocations were investigated and are discussed in this paper.


1990 ◽  
Vol 209 ◽  
Author(s):  
D.C. McKenna ◽  
G.-C. Wang ◽  
K. Rajan

ABSTRACTThe interfacial structure of a large lattice mismatched (˜25%) (111) Ag-Si system was studied by using transmission electron diffraction (SADP - Selected Area Diffraction Pattern). The epitaxial films of Ag (600–1200Å) were grown by MBE on flat Si(111) and misoriented Si(1ll) surfaces. We have examined the interfacial structures of the Ag on 2° misoriented Si(111) using diffraction patterns of cross sectional view. Through a detail analysis of thelocation and shape of the diffraction spots, we can determine the epitaxial relationship between Ag and Si, the small tilt angle of Ag(111) planes withrespect to the misoriented Si(111), the period of the finite terrace size of the misoriented Si substrate, and the size of the ordered region in the Ag film. The O-lattice analysis developed by Bollmann has beenapplied to this interface andthe result is compared with the SADP observation.


2002 ◽  
Vol 17 (2) ◽  
pp. 358-366 ◽  
Author(s):  
Yumi H. Ikuhara ◽  
Xiuliang Ma ◽  
Yuji Iwamoto ◽  
Yuichi Ikuhara ◽  
Koichi Kikuta ◽  
...  

Spinel LiMn2O4 thin films have been prepared on MgO(110) and Au/MgO(110) substrates by a chemical solution deposition method. The interfaces between film and substrate were characterized by means of high-resolution transmission electron microscopy (HREM) as well as x-ray diffraction. Cross-sectional HREM observation revealed that LiMn2O4 films grew epitaxially on the MgO(110) and Au/MgO(110) substrates. In the LiMn2O4/MgO system, misfit dislocations formed to accommodate the lattice strain at the LiMn2O4/MgO interface. In the LiMn2O4/Au/MgO system, Au grew epitaxially on the MgO substrate with its surface facetted along {111} planes, probably because the surface energy of this plane is relatively low. The formation of these facets is considered to have a favorable effect on the growth of {111} planes of LiMn2O4 when deposited on the Au film.


2006 ◽  
Vol 934 ◽  
Author(s):  
Anitha Jallipalli ◽  
G. Balakrishnan ◽  
S.H. Huang ◽  
A. Khoshakhlagh ◽  
L.R. Dawson ◽  
...  

ABSTRACTWe present analytical models and experimental results to describe low-defect density growth (∼ 6 × 105/cm2) of highly mismatched antimonides on Si and GaAs substrates, with strain relief achieved at the growth interface through periodic, 90° interfacial misfit dislocations (IMF). We use molecular mechanics (MM) based modeling techniques to understand, at the atomic level, the spontaneous formation and energetics of these IMF. We have modeled, grown and characterized two systems extensively, these are - AlSb on Si with ∼ 13% mismatch and GaSb on GaAs with 7.83% lattice mismatch. Growth of these materials by molecular beam epitaxy (MBE) and subsequent High-Resolution Transmission Electron Microscopy (HR-TEM) has indicated that there is no tetragonal distortion in these two systems despite the high lattice mismatch. Instead, the mismatched epi-layers spontaneously form periodic IMF arrays that run along both [110] and [1-10] directions and relieve almost 100% of the strain in a few monolayers of deposition. To model this form of strain relief, we use existing theories of strain relief adapted for very high strain conditions and we also use bond energetics to model the strain-relieving interface. The IMFs in these systems are periodic and so is the deviation in bond lengths and bond angles, which restricts our calculation space to a finite number of elements. We shall also demonstrate extensive growth and characterization results of the materials grown with a particular emphasis on the strain-relieving interface to show excellent agreement of the experimental data with the proposed models. The high quality and low-defect density in AlSb grown on Si, has helped us demonstrate optically pumped IR VCSELs and edge emitters monolithically on Si (001) and this data will also be presented.


2007 ◽  
Vol 1034 ◽  
Author(s):  
Masanori Kawai ◽  
Daisuke Kan ◽  
Seiichi Isojima ◽  
Hiroki Kurata ◽  
Seiji Isoda ◽  
...  

AbstractBaTiO3/SrTiO3(001) epitaxial thin films were prepared at various growth rates by pulsed laser deposition, and their heterostructures were evaluated by synchrotron x-ray diffraction measurements and cross-sectional scanning transmission electron microscopy observations. In a film grown at a low deposition rate (0.01 nm/s), misfit dislocations are found near the interface and a fully relaxed BaTiO3 thin film grows epitaxially on the substrate. On the other hand, a film grown at a high deposition rate (0.04 nm/s) consists of strained and relaxed BaTiO3 lattices. Our results showed that the critical thickness of BaTiO3/SrTiO3(001) epitaxial thin films can be controlled by the deposition rate and that the critical thickness increases with increasing the deposition rate, and by adjusting the deposition rate we were able to prepare epitaxial thin films consisting of fully strained BaTiO3, partially strained BaTiO3 or fully relaxed BaTiO3. We have also achieved the growth controlling of BaTiO3 thin films on SrTiO3(001) substrates with SrRuO3 bottom electrode layer.


2004 ◽  
Vol 230-232 ◽  
pp. 93-100 ◽  
Author(s):  
O. Yastrubchak ◽  
T. Wosiński ◽  
J.Z. Domagała ◽  
E. Łusakowska

Partially relaxed III–V heterostructures: GaAs/InGaAs and InP/InAlAs/InGaAs, with a small lattice mismatch, grown using molecular beam epitaxy under compressive or tensile misfit stress at the (001) interface, have been investigated by means of high-resolution X-ray diffractometry, atomic force microscopy and generalized ellipsometry. Additionally, transmission electron microscopy and electron-beam induced current in a scanning electron microscope have been employed to reveal misfit dislocations at the heterostructure interface. Chemical etching was used to determine polarity of the crystals and threading dislocation densities in the epitaxial layers. Our findings are interpreted in terms of the dependent on growth conditions, material’s composition and doping glide velocities of two types of misfit dislocations: α and β, differing in their core structure and lying along two orthogonal 〈110〉 crystallographic directions at the (001) interface.


Author(s):  
F.-R. Chen ◽  
T. L. Lee ◽  
L. J. Chen

YSi2-x thin films were grown by depositing the yttrium metal thin films on (111)Si substrate followed by a rapid thermal annealing (RTA) at 450 to 1100°C. The x value of the YSi2-x films ranges from 0 to 0.3. The (0001) plane of the YSi2-x films have an ideal zero lattice mismatch relative to (111)Si surface lattice. The YSi2 has the hexagonal AlB2 crystal structure. The orientation relationship with Si was determined from the diffraction pattern shown in figure 1(a) to be and . The diffraction pattern in figure 1(a) was taken from a specimen annealed at 500°C for 15 second. As the annealing temperature was increased to 600°C, superlattice diffraction spots appear at position as seen in figure 1(b) which may be due to vacancy ordering in the YSi2-x films. The ordered vacancies in YSi2-x form a mesh in Si plane suggested by a LEED experiment.


Author(s):  
L. Tang ◽  
G. Thomas ◽  
M. R. Khan ◽  
S. L. Duan

Cr thin films are often used as underlayers for Co alloy magnetic thin films, such as Co1, CoNi2, and CoNiCr3, for high density longitudinal magnetic recording. It is belived that the role of the Cr underlayer is to control the growth and texture of the Co alloy magnetic thin films, and, then, to increase the in plane coercivity of the films. Although many epitaxial relationship between the Cr underlayer and the magnetic films, such as ﹛1010﹜Co/ {110﹜Cr4, ﹛2110﹜Co/ ﹛001﹜Cr5, ﹛0002﹜Co/﹛110﹜Cr6, have been suggested and appear to be related to the Cr thickness, the texture of the Cr underlayer itself is still not understood very well. In this study, the texture of a 2000 Å thick Cr underlayer on Nip/Al substrate for thin films of (Co75Ni25)1-xTix dc-sputtered with - 200 V substrate bias is investigated by electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document