Flow and Fracture Behavior of NiAl in Relation to the Brittle-Toductile Transition Temperature

1990 ◽  
Vol 213 ◽  
Author(s):  
R.D. Noebe ◽  
R.R. Bowman ◽  
C.L. Cullers ◽  
S.V. Raj

ABSTRACTNiAl has only three independent slip systems operating at low and intermediate temperatures whereas five independent deformation mechanisms are required to satisfy the von Mises criterion for general plasticity in polycrystalline materials. Yet, it is generally recognized that polycrystalline NiAl can be deformed extensively in compression at room temperature and that limited tensile ductility can be obtained in extruded materials. In order to determine whether these results are in conflict with the von Mises criterion, tension and compression tests were conducted on powder-extruded, binary NiAl between 300 and 1300 K. The results indicate that below the brittle-to-ductile transition temperature (BDTT) the failure mechanism in NiAl involves the initiation and propagation of cracks at the grain boundaries which is consistent with the von Mises analysis. Furthermore, evaluation of the flow behavior of NiAl indicates that the transition from brittle to ductile behavior with increasing temperature coincides with the onset of recovery mechanisms such as dislocation climb. The increase in ductility above the BDTT is therefore attributed to the climb of <001> type dislocations which in combination with dislocation glide enable grain boundary compatibility to be maintained at the higher temperatures.

1990 ◽  
Vol 213 ◽  
Author(s):  
S.E. Hartfield-Wünsch ◽  
R. Gibala

ABSTRACTA study has been undertaken to understand the cyclic deformation behavior of singlephase B2 aluminides. The alloys chosen for this study were rapidly solidified powder extrusions of Fe60 Al40 (at.%) and Ni50 A130 Fe20 (at.%). These alloys were chosen to compare the cyclic deformation behavior of a material that deforms by <111> slip and thus meets the von Mises criterion for slip system compatibility (Fe60Al40) with one that deforms by <100> slip and does not meet the von Mises criterion (Ni50A130Fe20). Fully reversed tension/compression tests were run in plastic strain control at room temperature. Rapid cyclic hardening was observed for the Fe60Al40 alloy. However, intergranular failure occurred before saturation was reached at all plastic strain amplitudes. The Ni50A130Fe20 alloy displays no tensile ductility , with failure occurring before completion of the first cycle. For the Ni50A130Fe20 alloy, a lower extrusion temperature during materials processing, and compressive prestrain both increase the cyclic accumulated plastic strain to failure, as well as the monotonic tensile ductility. This made cyclic deformation of the Ni50Al30Fe20 alloy possible. In this alloy, limited cyclic hardening is followed by saturation. For both the Fe60Al40 and Ni50 Al30Fe20 alloys, significant ductility enhancement was achieved by the application of thin nickel films. All cyclic deformation results are compared to similar monotonic tension results and are discussed in terms of the dislocation substructures observed.


2015 ◽  
Vol 651-653 ◽  
pp. 114-119 ◽  
Author(s):  
Marco Sasso ◽  
Archimede Forcellese ◽  
Michela Simoncini ◽  
Dario Amodio ◽  
Edoardo Mancini

The aim of this work is to study the mechanical properties of alloy AA7075 in both T6 and O temper states, in terms of visco-plastic and fracture behavior. Tension and compression tests were carried out starting from the quasi-static loading condition 10-3 up to strain rates as high as 2 x 103 s-1. The high strain rate tests were performed using a Split Hopkinson Tension-Compression Bar (SHTCB) apparatus. The tensile specimens were also subjected to micro-fractography analysis by Scanning Electronic Microscope (SEM) to evaluate the characteristics of the fracture. The results show a different behavior for the two temper states: AA7075-O showed a significant sensitivity to strain rate, with a ductile behavior and a fracture morphology characterized by coalescence of microvoids, whilst AA7075-T6 is generally characterized by a less ductile behaviour, both as elongation at break and as fracture morphology. Brittle cleavage is accentuated with increasing strain rate. The Johnson-Cook viscoplastic model wad also used to fit the experimental data with an optimum matching.


2013 ◽  
Vol 765 ◽  
pp. 537-542
Author(s):  
Kseniya Illková ◽  
František Chmelík ◽  
Patrik Dobron ◽  
Jan Bohlen ◽  
Dietmar Letzig ◽  
...  

This paper focuses on the analysis of the deformation behaviour with respect to the acoustic emission response and mechanical properties of differently extruded magnesium Mg-Mn alloys. Six types of Mg-Mn alloys (with Al, Ca, Ce, Y, Nd additions) were processed by indirect extrusion with two different speeds. Alloys with addition of Ca, Al and Nd were selected and presented in this manuscript due to their prospective mechanical properties. Additions of Ca and Al had significant influence on the microstructure refinement and texture of the Mg-Mn alloy, whereas addition of Nd led to the absence of the tension-compression asymmetry. Measurements of the acoustic emission were done during the uniaxial tension and compression tests. The results are discussed with respect to the influence of alloying elements on the deformation behaviour in terms of the activation of dislocation glide and twinning.


Author(s):  
A Nayebi ◽  
H Rokhgireh ◽  
M Araghi ◽  
M Mohammadi

Additively manufactured parts often comprise internal porosities due to the manufacturing process, which needs to be considered in modelling their mechanical behaviour. It was experimentally shown that additively manufactured parts’ tensile and compressive mechanical properties are different for various metallic alloys. In this study, isotropic continuum damage mechanics is used to model additively manufactured alloys’ tension and compression behaviours. Compressive stress components can shrink discontinuities present in additively manufactured alloys. Therefore, the crack closure effect was employed to describe different behaviours during uniaxial tension and compression tests. A finite element model embedded in an ABAQUS’s UMAT format was developed to account for the isotropic continuum damage mechanics model. The numerical results of tension and compression tests were compared with experimental observations for additively manufactured maraging steel, AlSi10Mg and Ti-6Al-4V. Stress–strain curves in tension and compression of these alloys were obtained using the continuum damage mechanics model and compared well with the experimental results.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2021
Author(s):  
Oleksandr Lypchanskyi ◽  
Tomasz Śleboda ◽  
Aneta Łukaszek-Sołek ◽  
Krystian Zyguła ◽  
Marek Wojtaszek

The flow behavior of metastable β titanium alloy was investigated basing on isothermal hot compression tests performed on Gleeble 3800 thermomechanical simulator at near and above β transus temperatures. The flow stress curves were obtained for deformation temperature range of 800–1100 °C and strain rate range of 0.01–100 s−1. The strain compensated constitutive model was developed using the Arrhenius-type equation. The high correlation coefficient (R) as well as low average absolute relative error (AARE) between the experimental and the calculated data confirmed a high accuracy of the developed model. The dynamic material modeling in combination with the Prasad stability criterion made it possible to generate processing maps for the investigated processing temperature, strain and strain rate ranges. The high material flow stability under investigated deformation conditions was revealed. The microstructural analysis provided additional information regarding the flow behavior and predominant deformation mechanism. It was found that dynamic recovery (DRV) was the main mechanism operating during the deformation of the investigated β titanium alloy.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2016 ◽  
Vol 35 (6) ◽  
pp. 599-605 ◽  
Author(s):  
Fuqiang Zhen ◽  
Jianlin Sun ◽  
Jian Li

AbstractThe flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s−1 by isothermal compression tests. The true stress–strain curves were obtained from the measured load–stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.


2020 ◽  
Vol 62 (10) ◽  
pp. 1003-1009
Author(s):  
Yantao Sun ◽  
Jia Huang ◽  
Duoqi Shi ◽  
Shengliang Zhang ◽  
Zhizhong Fu ◽  
...  

Abstract Comprehensive characterization mechanical properties of aerogels and their composites are important for engineering design. In particular, some aerogel composites were reported to have varied tension and compression moduli. But conducting tension tests is difficult for the reason that low strength and brittleness will lead to unexpected failure in the non-test area. A method is presented for measuring both the tension and compression moduli of a ceramic-fiber reinforced SiO2 aerogel composite by bending via digital image correlation. First, the relationship between bending behavior and the tension/compression moduli was introduced for bimodular materials. Then a bending test was conducted to predict tension and the compression moduli of the ceramicfiber- reinforced SiO2 aerogel composite via digital image correlation. In addition, uniaxial tension and compression tests of the aerogel composites were carried out, respectively for measuring tension and compression moduli. The tension and compression moduli measured were numerically similar to results obtained from uniaxial tests with a difference of less than 14 %.


Sign in / Sign up

Export Citation Format

Share Document