Deposition and Characterization of Near “Intrinsic” μc-Si Films Deposited by Remote Plasma-Enhanced Chemical-Vapor Deposition - RPECVD

1991 ◽  
Vol 219 ◽  
Author(s):  
M. J. Williams ◽  
C. Wang ◽  
G. Lucovsky

ABSTRACTUndoped films of μc-Si deposited by RPECVD are n-type with a room temperature dark conductivity of ∼6×10-4 S/cm and an activation energy of ∼0.3 eV. This is due to native donor-like defects. We report on the conductivity and photoconductivity of boron-doped μc-Si, with emphasis on low doping levels that are designed to compensate exactly these native donor-like defects. We describe the dark conductivity and the photoconductivity as functions of dark conductivity activation energy and the average boron concentration, and present a model for the photoconductivity based on band off sets between the crystalline and amorphous regions of the μc-Si.

2001 ◽  
Vol 16 (6) ◽  
pp. 1531-1534 ◽  
Author(s):  
Jong-Hwan Yoon

Hydrogenated microcrystalline silicon (μc-Si:H) grown by a conventional plasma-enhanced chemical vapor deposition from high hydrogen-diluted silane was annealed by increasing the temperature from 25 to 450 °C at a constant rate of 12 °C/min (one annealing cycle). Dark-conductivity activation energy gradually increases with increasing the number of annealing cycle to a saturation value of about 0.6 eV, observed in truly intrinsic μc-Si:H films. For the saturated state, the dark conductivity of the order of 10−8 S/cm was obtained. Little or no change in the oxygen content was observed after the annealing.


2011 ◽  
Vol 485 ◽  
pp. 133-136 ◽  
Author(s):  
Ryoichi Saotome ◽  
Naoki Wakiya ◽  
Takanori Kiguchi ◽  
Jeffrey S. Cross ◽  
Osamu Sakurai ◽  
...  

Highly oriented and polycrystalline Gd2O3 doped CeO2 thin films were prepared on α-Al2O3(0001) substrates by chemical vapor deposition, using Ce(C5H4C2H5)3 and Gd(C5H4C2H5)3 as precursors. The compositions of the films were controlled by optimizing the vaporization pressure of Gd precursor under the constant vaporization condition of Ce precursor. In-plane electrical conductivities of the films at various temperatures and oxygen partial pressures were evaluated by electrochemical impedance spectroscopy measurements. The activation energy of the film was determined as 0.94 eV, which is comparable with that of pulsed laser deposited films.


1994 ◽  
Vol 3 (4-6) ◽  
pp. 618-622 ◽  
Author(s):  
Takashi Sugino ◽  
Kiyoshi Karasutani ◽  
Fumihiro Mano ◽  
Hiroya Kataoka ◽  
Junji Shirafuji ◽  
...  

2007 ◽  
Vol 989 ◽  
Author(s):  
Yasutoshi YASHIKI ◽  
Seiichi KOUKETSU ◽  
Shinsuke MIYAJIMA ◽  
Akira YAMADA ◽  
Makoto KONAGAI

AbstractEffects of boron doping on microcrystalline germanium carbon alloy (μc-Ge1-xCx:H) thin films have been investigated. We deposited boron-doped p-type μc-Ge1-xCx:H thin films by hot-wire chemical vapor deposition technique using hydrogen diluted monomethylgermane (MMG) and diborane (B2H6). A dark conductivity of 1.3 S/cm and carrier concentration of 1.7 x 1020 cm-3 were achieved with B2H6/MMG ratio of 0.1. Furthermore, the activation energy decreased from 0.37 to 0.037 eV with increasing B2H6/MMG ratio from 0 to 0.1. We also fabricated p-type μc-Ge1-xCx:H/n-type c-Si heterojunction diodes. The diodes showed rectifying characteristics. The typical ideality factor and rectifying ratio were 1.4 and 3.7 x 103 at ¡Ó 0.5 V, respectively.


2004 ◽  
Vol T114 ◽  
pp. 31-33
Author(s):  
J Hållstedt ◽  
A Parent ◽  
S-L Zhang ◽  
M Östling ◽  
H H Radamson

Author(s):  
X.B. Zeng ◽  
X.B. Liao ◽  
S.T. Dai ◽  
B. Wang ◽  
Y.Y. Xu ◽  
...  

Boron-doped (B-doped) silicon nanowires (SiNWS) have been prepared and characterized by Raman scattering and photoluminescence (PL). B-doped SiNWS were grown by plasma enhanced chemical vapor deposition (PECVD), using diborane (B2H6) as the dopant gas. Raman spectra show a band at 480cm-1,which is attributed to amorphous silicon. Photoluminescence at room temperature exhibits three distinct emission peaks at 1.34ev,1.42ev,1.47ev. Possible reason for these is suggested. PACS: 36.40._c; 81.15.Gh; 81.20._n


1993 ◽  
Vol 297 ◽  
Author(s):  
K. Gaughan ◽  
ZHAOHUI Lin ◽  
J.M. Viner ◽  
P.C. Taylor ◽  
P.C. Mathur

N-type amorphous silicon films were grown using a mixture of silane and tertiarybutylphosphine (TBP-C4H11P) vapor in a plasma enhanced chemical vapor deposition system. The concentration of TBP in silane was varied from 0 to 3% by volume. As expected, at low doping levels, the photoluminescence (PL) intensity associated with both the band-tail recombination (peak at 1.3 eV) and deep-defect recombination (peak at 0.8 eV) decreased as the impurity concentration increased, but for TBP concentrations > 0.1% the PL intensity increased again. For moderate doping levels the activation energy for conductivity leveled off at ∼ 0.2 eV. For concentrations of TBP > 0.1% the activation energy for dark conductivity increased. A shift in the optical gap was observed for the highest impurity concentrations due to the incorporation of carbon from the TBP. These results are interpreted as a pronounced decrease in the doping efficiency for heavily doped films (> 0.1%) perhaps influenced by the increased carbon concentration.


Sign in / Sign up

Export Citation Format

Share Document