Phase Transitions In Blends Of Liquid Crystalline Polymer/Polyether Imide

1991 ◽  
Vol 227 ◽  
Author(s):  
Joonhyun Nam ◽  
Tomohiro Fukai ◽  
Thein Kyu

ABSTRACTA thermotropic liquid crystalline copolymer consisting of bisphenol E diacetate, isophthalic acid and 2,6-naphthalene dicarboxylic acid was blended with polyether imide by dissolving in a mixed solvent of phenol/1,1,2,2-tetrachloroethane in a ratio of 60/40 w/w and co-precipitating the ternary solution in non-solvent (methanol). Wide-angle x-ray diffraction and differential scanning calorimetry studies revealed that the blends were completely amorphous with a single glass transition temperature. The single phase was probably entrapped during solvent removal, but these mixes were unstable and phase separated upon heating. Mesophase structure developed in the LCP rich region with continued annealing. The evolution of crystalline texture was monitored by time-resolved wide-angle x-ray diffraction following a temperature jump from ambient to 265 °C. The recrystallization process of LCP was found to slow down in the blend state relative to that of the neat LCP.

2010 ◽  
Vol 428-429 ◽  
pp. 144-149
Author(s):  
Xiao Dong Chen ◽  
Nan Qiao Zhou ◽  
Hai Zhang

A thermotropic liquid crystalline polyurethane (LCPU) was synthesized by the polyaddition reaction of 3,3'-dimethyl-4,4'-biphenylene diisocyanate (TODI) with 4,4-bis(6-hydroxyhexoxy)biphenyl (BHHBP). The liquid crystalline behavior of the polymer was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide angle X-ray diffraction (WAXD). The LCPU exhibited a nematic phase with a threaded texture and had a wide mesophase temperature range. And thermogravimetric analysis (TGA) indicated the decomposition temperature of the LCPU was >300°C. The observation of POM showed that the LCPU was a thermotropic nematic liquid crystalline polymer at certain temperature range.


2012 ◽  
Vol 116 (32) ◽  
pp. 9846-9859 ◽  
Author(s):  
Mario Encinar ◽  
Aránzazu Martínez-Gómez ◽  
Ramón G. Rubio ◽  
Ernesto Pérez ◽  
Antonio Bello ◽  
...  

2003 ◽  
Vol 36 (4) ◽  
pp. 986-990 ◽  
Author(s):  
Jaroslaw Janicki

Novel melt-processable molecular composites were obtained from isotactic polypropylene (iPP) and liquid-crystalline oligoester (LCO). The nanostructure and thermal behaviour of molecular composites were examined by real-time synchrotron small-angle X-ray scattering and wide-angle X-ray diffraction methods, and differential scanning calorimetry. The synthesized oligoester, with low melting temperature (391 K), exhibits the ability to form a thermotropic mesophase. It was shown that strong rigid rod-like macromolecules of LCO are dispersed at the molecular scale in iPP matrix and act as reinforcing fibres.


Polymer ◽  
2001 ◽  
Vol 42 (21) ◽  
pp. 8965-8973 ◽  
Author(s):  
Zhi-Gang Wang ◽  
Xuehui Wang ◽  
Benjamin S. Hsiao ◽  
Saša Andjelić ◽  
Dennis Jamiolkowski ◽  
...  

Carbon ◽  
2015 ◽  
Vol 87 ◽  
pp. 246-256 ◽  
Author(s):  
Périne Landois ◽  
Mathieu Pinault ◽  
Stéphan Rouzière ◽  
Dominique Porterat ◽  
Cristian Mocuta ◽  
...  

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahram Mehdipour-Ataei ◽  
Leila Akbarian-Feizi

AbstractA diamine monomer containing ester, amide and ether functional groups was prepared and its polymerization reaction with different diisocyanates to give main chain poly(ester amide ether urea)s was investigated. The monomer was synthesized via reaction of terephthaloyl chloride with 4-hydroxybenzoic acid and subsequent reaction of the resulted diacid with 1,8-diamino-3,6-dioxaoctane. The polymers were characterized by FT-IR and 1H-NMR spectroscopic method and elemental analysis. The resulting polymers exhibited excellent solubility in polar solvents. Crystallinity of the resulted polymers was evaluated by wide-angle X-ray diffraction (WXRD) method, and they exhibited semi-crystalline patterns. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were in the range of 88-112 °C. The temperatures for 10% weight loss (T10) from their thermogravimetric analysis (TGA) curves were found to be in the range of 297-312 °C in air. Also the prepared polyureas showed liquid crystalline character.


Clay Minerals ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Yun Huang ◽  
Xiaoyan Ma ◽  
Guozheng Liang ◽  
Hongxia Yan

AbstractMelt blending using a twin-screw extruder was used to prepare composites of polypropylene (PP)/organic rectorite (PR). The organic rectorite (OREC) was modified with dodecyl benzyl dimethyl ammonium bromide (1227). Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy were used to investigate the dispersion of OREC in the composites. The d spacings of OREC in PR composites was greater than in OREC itself. The dispersion of OREC particles in the PP polymer matrix was fine and uniform when the clay content was small (2 wt.%). The rheology was characterized using a capillary rheometer. The processing behaviour of the PR system improved as the amount of OREC added increased. Non-isothermal crystallization kinetics were analysed using differential scanning calorimetry. It was shown that the addition of OREC had a heterogeneous nucleation effect on PP, and can accelerate the crystallization. However, only when fine dispersion was achieved, and at lower rates of temperature decrease, was the crystallinity greater. Wide-angle X-ray diffraction and polarized light microscopy were used to observe the crystalline form and crystallite size. The PP in the PR composites exhibited an a-monoclinic crystal form, as in pure PP, and in both cases a spherulite structure was observed. However, the smaller spherulite size in the PR systems indicated that addition of OREC can reduce the crystal size significantly, which might improve the ‘toughness’ of the PP. The mechanical properties (tensile and impact strength) improved when the amount of OREC added was appropriate. Dynamic mechanical analysis showed that the storage modulus (E′) and loss modulus (E″) of the nanocomposites were somewhat greater than those of pure PP when an appropriate amount of OREC was added. Finally, thermogravimetric analysis showed that the PR systems exhibited a greater thermal stability than was seen with pure PP.


2010 ◽  
Vol 428-429 ◽  
pp. 126-131
Author(s):  
Wei Zhong Lu ◽  
Chun Wei ◽  
Qui Shan Gao

Polymethylene bis(p-hydroxybenzoates) were prepared from methyl p-hydroxybenzoate and different diols by melted transesterification reaction. Three liquid crystalline polyesters were synthesized from terephthaloyl dichloride and polymethylene bis(p-hydroxybenzoates). Its structure, morphology and properties were characterized by Ubbelohde viscometer, Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC), polarized optical microscopy (POM) with a hot stage, and wide-angle X-ray diffraction (WAXD). Results indicated that the intrinsic viscosities were between 0.088 and 0.210 dL/g. Optical microscopy showed that the TLCP has a highly threaded liquid crystalline texture and a high birefringent schlieren texture character of nematic phase and has wider mesophase temperature ranges for all polyesters. DSC analysis were found that the melting point (Tm), isotropic temperature (Ti) of TLCPs decreased and the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyester. The WAXD results showed that TLCPs owned two strong diffraction peaks at 2θ near 19° and 23°.


2012 ◽  
Vol 8 ◽  
pp. 371-378 ◽  
Author(s):  
Katharina C Kress ◽  
Martin Kaller ◽  
Kirill V Axenov ◽  
Stefan Tussetschläger ◽  
Sabine Laschat

4-Cyano-1,1'-biphenyl derivatives bearing ω-hydroxyalkyl substituents were reacted with methyl 3-chloro-3-oxopropionate or cyanoacetic acid, giving liquid-crystalline linear malonates and cyanoacetates. These compounds formed monotropic nematic phases at 62 °C down to ambient temperature upon cooling from the isotropic liquid. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction (WAXS).


Sign in / Sign up

Export Citation Format

Share Document