Possibility of a Si-Based Infrared Detector Using Microcrystalline B-Si-Ge Alloys

1991 ◽  
Vol 228 ◽  
Author(s):  
Y. Osaka ◽  
K. KOhno ◽  
P. Shresta

ABSTRACTMicrocrystalline films of B-Si-Ge alloy have been deposited by the sputtering of Ge target in atmosphere of SiH4 and B2H6. Microcrystalline B-Si-Ge alloy/Si hetero-junction was fabricated on p-type Si(100) wafers with the resistivity of 1∼10 Ωcm. The barrier height of this Schottky structure was estimated to be in the range of 0.20∼0.30 eV which can be controlled by inclusion amounts of boron. The reverse biased Schottky characteristic using the microcrystalline B-Si-Ge alloy as to the gate shows the avalanche breakdown by illuminating of 6 μm light.

1999 ◽  
Vol 607 ◽  
Author(s):  
B. Aslan ◽  
R. Turan ◽  
O. Nur ◽  
M. Karlsteen ◽  
M. Willander

AbstractA Schottky type infrared detector fabricated on a p-type Si1−xGex substrate has a higher cut-off wavelength than one on a pure Si substrate because the barrier height of the Schottky junction on p-type Si1−xGex decreases with the Ge content and the induced strain in the Si1−xGex layer. We have studied the effect of the strain relaxation on the internal photoemission and I-V characteristics of a Pt/Si1−xGex Schottky junction with x=0.14. It is shown that the cut-off wavelength of the diode made on a strained Si0.86Ge0.14 layer is higher than that on a Si substrate as expected. This shows the possibility of tuning the range of these detectors in the mid-infrared region. However, the thermal relaxation in the Si0.86Ge0.14 layer is found to reduce the cut-off wavelength to lower values, showing that the difference between the Fermi level of the metal and the valence band edge increases with the layer relaxation. This effect should be taken into account when a Schottky type infrared detector is manufactured on a strained Si1−xGex film. I-V characteristics of the junctions also indicate an increase of the barrier height with the relaxation of Si1−xGex. These results demonstrate the band edge movements in a Si ixGex layer experimentally agree with the expected changes in the band structure of the Si1−xGex layer with strain relaxation.


Author(s):  
Peter Kruck ◽  
Manfred Helm ◽  
Günther Bauer ◽  
Joachim F. Nützel ◽  
Gerhard Abstreiter

2015 ◽  
Vol 821-823 ◽  
pp. 929-932 ◽  
Author(s):  
Filippo Giannazzo ◽  
Stefan Hertel ◽  
Andreas Albert ◽  
Gabriele Fisichella ◽  
Antonino La Magna ◽  
...  

The electrical properties of the interface between quasi free standing bilayer graphene (QFBLG) and SiC(0001) have been investigated by nanoscale resolution current measurements using conductive atomic force microscopy (CAFM). I-V analyses were carried out on Au-capped QFBLG contacts with different sizes (from 200 down to 0.5 μm) fabricated on SiC samples with different miscut angles (from on-axis to 3.5° off-axis). The extracted QFBLG/SiC Schottky barrier height (SBH) was found to depend on the contact size. SBH values ∼0.9-1 eV were obtained for large contacts, whereas a gradual increase was observed below a critical (micrometer scale) contact size (depending on the SiC miscut angle) up to values approaching ∼1.5 eV. Nanoscale resolution current mapping on bare QFLBG contacts revealed that SiC step edges and facets represent preferential current paths causing the effective SBH lowering for larger contacts. The reduced barrier height in these regions can be explained in terms of a reduced doping of QFBLG from SiC substrate at (11-20) step edges with respect to the p-type doping on the (0001) terraces.


2018 ◽  
Vol 96 (7) ◽  
pp. 816-825 ◽  
Author(s):  
H.H. Güllü ◽  
M. Terlemezoğlu ◽  
Ö. Bayraklı ◽  
D.E. Yıldız ◽  
M. Parlak

In this paper, we present results of the electrical characterization of n-Si/p-Cu–Zn–Se hetero-structure. Sputtered film was found in Se-rich behavior with tetragonal polycrystalline nature along with (112) preferred orientation. The band gap energy for direct optical transitions was obtained as 2.65 eV. The results of the conductivity measurements indicated p-type behavior and carrier transport mechanism was modelled according to thermionic emission theory. Detailed electrical characterization of this structure was carried out with the help of temperature-dependent current–voltage measurements in the temperature range of 220–360 K, room temperature, and frequency-dependent capacitance–voltage and conductance-voltage measurements. The anomaly in current–voltage characteristics was related to barrier height inhomogeneity at the interface and modified by the assumption of Gaussian distribution of barrier height, in which mean barrier height and standard deviation at zero bias were found as 2.11 and 0.24 eV, respectively. Moreover, Richardson constant value was determined as 141.95 Acm−2K−2 by means of modified Richardson plot.


1991 ◽  
Vol 44 (1) ◽  
pp. 67 ◽  
Author(s):  
Vincent WL Chin ◽  
Stephen M Newbery ◽  
John WV Storey ◽  
Ulrich Theden

The effect of sintering temperature on the barrier height of p-type PtSi Schottky diodes is studied by electrical and infrared photoresponse methods. It is revealed that there is a consistent difference of about 0�06 eV for two samples sintered at different temperatures.


1995 ◽  
Vol 378 ◽  
Author(s):  
S.R. Smith ◽  
A.O. Evwaraye ◽  
W.C. Mitchel

AbstractWe have examined the temperature dependence of the barrier height of Au, Ag, Ni, and Al, metal-semiconductor contacts on n-type 6H-SiC, and Al metal-semiconductor contacts on p-type 6H-SiC. The barrier height was determined from the (1/C2) vs VR characteristics of the contacts at temperatures ranging from 300K to 670K. The measurements were made at 1 MHz. These measurements were compared to I-V measurements at various temperatures, and to the behavior predicted by standard models.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 636
Author(s):  
Mehadi Hasan Ziko ◽  
Ants Koel ◽  
Toomas Rang ◽  
Muhammad Haroon Rashid

The diffusion welding (DW) is a comprehensive mechanism that can be extensively used to develop silicon carbide (SiC) Schottky rectifiers as a cheaper alternative to existing mainstream contact forming technologies. In this work, the Schottky barrier diode (SBD) fabricated by depositing Al-Foil on the p-type 4H-SiC substrate with a novel technology; DW. The electrical properties of physically fabricated Al-Foil/4H-SiC SBD have been investigated. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics based on the thermionic emission model in the temperature range (300 K–450 K) are investigated. It has been found that the ideality factor and barrier heights of identically manufactured Al-Foil/p-type-4H-SiC SBDs showing distinct deviation in their electrical characteristics. An improvement in the ideality factor of Al-Foil/p-type-4H-SiC SBD has been noticed with an increase in temperature. An increase in barrier height in fabricated SBD is also observed with an increase in temperature. We also found that these increases in barrier height, improve ideality factors and abnormalities in their electrical characteristics are due to structural defects initiation, discrete energy level formation, interfacial native oxide layer formation, inhomogenous doping profile distribution and tunneling current formation at the SiC sufaces.


2012 ◽  
Vol 51 ◽  
pp. 09MK01 ◽  
Author(s):  
Youngjun Park ◽  
Kwang-Soon Ahn ◽  
Hyunsoo Kim

2012 ◽  
Vol 51 (9S2) ◽  
pp. 09MK01 ◽  
Author(s):  
Youngjun Park ◽  
Kwang-Soon Ahn ◽  
Hyunsoo Kim

Sign in / Sign up

Export Citation Format

Share Document