A Current Conduction Mechanism in Laser Recrystallized Silicon Metal-Oxide-Semiconductor Transistors

1983 ◽  
Vol 23 ◽  
Author(s):  
Han-Sheng Lee

ABSTRACTN-channel MOS transistors were fabricated on silicon films that had been recrystallized by an argon ion laser at different power levels. These transistors showed electrical characteristics similar, but somewhat inferior to those devices fabricated on single crystal silicon substrates. These differences are attributed to the presence of trapping states at the grain boundaries of the crystallites in the recrystallized silicon. A coulombic scattering model is presented to explain these differences. In the case of films annealed at low laser power, an additional factor of nonuniform trap state distribution is invoked to explain device characteristics. This model provides an adequate explanation for the observed transport properties of transistors fabricated from recrystallized silicon films.

1989 ◽  
Vol 158 ◽  
Author(s):  
M. Jubber ◽  
J.I.B. Wilson ◽  
J.L. Davidson ◽  
P. John ◽  
P.G. Roberts

ABSTRACTGold tracks have been deposited on thermally oxidised and single crystal silicon, gold and nichrome coated silicon wafers by pyrolytic decomposition of gaseous alkyl (triethyl phosphine) gold(I) complexes using focussed 514 nm radiation from an argon ion laser. The precursors, RAu(I)Et3P, R = CH3, C2H5 are low melting point crystalline solids with relatively high vapour pressures (∼5 mtorr). They are representative of a class of compounds being evaluated for laser deposition of gold. Differential scanning calorimetry, DSC, shows that the thermal decomposition of MeAu(I)Et3P in the solid state is a two-stage process. The decomposition temperature is 63 ± 1°C. Tracks were deposited at laser scan speeds up to 35 μm s−1 with a beam diameter (1/e2) at the focus of ∼12 μm. SIMS, EDX and laser ionisation microprobe analysis, LIMA, were used to determine the chemical composition of the tracks. The purity of >98% is consistent with the measured resistivities (4.2 μΩ cm) at room temperature compared to bulk gold (∼2 μΩ cm). These resistivities were achieved without post deposition annealing. Stylus profilimetry and SEM data showed the lines produced from MeAu(I)Et3P have a virtually rectangular cross-section. Together with the absence of the ubiquitous λ-ripples, this feature suggests that deposition is more rapid on the gold surface than on the SiO2 substrate. Laser power thresholds are lower for silicon substrates coated with thin (5 - 10°A) films of gold or nichrome.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


1990 ◽  
Vol 191 ◽  
Author(s):  
D. B. Fenner ◽  
D. K. Fork ◽  
G. A. N. Connell ◽  
J. B. Boyce ◽  
F. A. Ponce ◽  
...  

ABSTRACTThin epitaxial films of cubic - fluorite structured PrO2 and YSZ (yttria- stabilized zirconia) were grown on single crystal silicon substrates using the laser ablation - deposition technique. X-ray diffraction theta two - theta, omega rocking and phi scans indicate a high degree of epitaxial orientation of the films to the Si lattice. The highest quality of epitaxy was obtained with the PrO2 [111] oriented normal to Si(111) surfaces and the cubic YSZ [100] normal to Si(100) surfaces. For both PrO2 and YSZ, high epitaxial quality required the removal of the Si native oxide prior to deposition and careful control of the deposition environment. It was further found that the YSZ films on Si(100) were an excellent surface for subsequent laser ablation of YBCO films by the usual in situ process. The resistivity of this YBCO was ≈ 250 micro-ohm-cm at 300 K, extrapolated to the resistivity -temperature origin, showed a sharp transition to zero resistance at ≈ 85 K and was nearly identical to high quality YBCO films deposited on (bulk) YSZ substrates.


Sign in / Sign up

Export Citation Format

Share Document