Discussion of “Growth of Single Crystal Silicon Overgrowths on Silicon Substrates” [Albert Mark (pp. 568–569, Vol. 107, No. 6)]

1960 ◽  
Vol 107 (12) ◽  
pp. 1026
Author(s):  
R. C. Sangster
JOM ◽  
2013 ◽  
Vol 65 (4) ◽  
pp. 567-573 ◽  
Author(s):  
Jiapeng Xu ◽  
Daniel Erickson ◽  
Sudesna Roy ◽  
Vinod Sarin

2019 ◽  
Vol 89 (7) ◽  
pp. 1086
Author(s):  
М.В. Кузьмин ◽  
М.А. Митцев

Adsorption of carbon monoxide (CO) molecules on ytterbium nanofilms with the thickness of 16 – 200 monolayers (6.1 – 76 nm) has been studied. The films are grown on single-crystal silicon substrates with the (111) surface orientation. It is shown that before the adsorption of CO molecules, ytterbium is divalent with the electronic configuration of [Xe]4f146s2. Upon the adsorption of gas molecules, a layer of trivalent ytterbium (the electronic configuration is [Xe]4f135d16s2), which is adjacent to the film surface, is formed. Evaluations of the thickness of the layer modified by adsorbed CO molecules are performed. Such evaluations have given rise to the values within 9 – 22 monolayers (3.4 – 8.4 nm).


1983 ◽  
Vol 25 ◽  
Author(s):  
I. C. Cheng ◽  
S. S. Lau ◽  
R. D. Thompson ◽  
K. N. Tu

ABSTRACTGadolinium silicide with its attractive features of low formation temperature of about 350°C and low Schottky barrier height on n-type single-crystal silicon substrates (ϕnB1∼O.4ev,ϕpB ∼ 0.7ev) was chosen for studying the feasibility of forming shallow uniform contacts. Samples with various compositions prepared by both bilayer evaporation with a configuration of Si(α)/Gd/Si(xtl) and coevaporation with a Si−Gd /Si(xtl)structure were used for studying the contact formation as a function of composition and heat treatment. We found that shallow contact formation can be achieved provided that the following conditions are met: (a) for bilayer evaporation, the atomic ratio of Si(α)/Gd ≥ 2 should be maintained, (b) for coevaporation, the Si to Gd atomic ratio between 1.7 and 2.0 is desired. The bilayer deposition scheme appears to be a more convenient technique to use in practice.


1985 ◽  
Vol 54 ◽  
Author(s):  
E. Bauser ◽  
D. KÄss ◽  
M. Warth ◽  
H. P. Strunk

ABSTRACTSingle-crystal silicon layers and doping multilayers have been grown by liquid phase qpitaxy on silicon substrates. The substrates were either partially masked by SiO2, with via holes of various shapes and sizes, or patterned with SiO2 stripes, or profiled with grooves and ridges. The via holes and grooves were just refilled, or they acted as seeding areas for lateral overgrowth of the oxidized wafer up to 100μm. The silicon layers, interfaces and heterointerfaces were free of defects. With appropriate growth conditions the surfaces and interfaces of the epitaxial Si were outstandingly planar.


1994 ◽  
Vol 356 ◽  
Author(s):  
S. D. McAdams ◽  
T. Y. Tsui ◽  
W. C. Oliver ◽  
G. M. Pharr

AbstractScratch testing has long been used to assess the adhesion of a film to its substrate. As film thicknesses have decreased, the need for greater precision and sensitivity in the scratch testing apparatus has increased. To this end, a nanoindenter was modified to make finely controlled, low-load scratches. Scratches at various loads and two orientations of a Berkovich scratching diamond were made in films of 100 nm of gold and 200 nm of copper, each on single crystal silicon. For each film type, samples with no interlayer, with an SiO2 interlayer, and with a TiW on SiO2 interlayer were tested. The scratch morphology was found to vary in a regular way with load, diamond orientation and interlayer material.


1981 ◽  
Vol 4 ◽  
Author(s):  
M. Lerme ◽  
T. Ternisien D'ouville ◽  
Duy-Phach Vu ◽  
A. Perio ◽  
G.A. Rozgonyi ◽  
...  

ABSTRACTExplosive crystallisation induced by an electron beam and by a CW Ar+ laser operating in fast scanning mode is observed for the first time on amorphized silicon layers created by implantation on either polycrystalline films deposited on Si02 or single crystal silicon substrates. The grain structure in the explosive crescents is studied by preferential chemical etching in conjunction with Nomarski optical microscopy, SEM and TEM. The results are similar to the so-called solid-phase explosive crystallization previously observed in a-Si films deposited on glass substrates.


2007 ◽  
Vol 989 ◽  
Author(s):  
Douglas C. Thompson ◽  
J. Decker ◽  
T. L. Alford ◽  
J. W. Mayer ◽  
N. David Theodore

AbstractMicrowave heating is used to activate solid phase epitaxial re-growth of amorphous silicon layers on single crystal silicon substrates. Layers of single crystal silicon were made amorphous through ion implantation with varying doses of boron or arsenic. Microwave processing occurred inside a 2.45 GHz, 1300 W cavity applicator microwave system for time-durations of 1-120 minutes. Sample temperatures were monitored using optical pyrometery. Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy were used to monitor crystalline quality in as-implanted and annealed samples. Sheet resistance readings show dopant activation occurring in both boron and arsenic implanted samples. In samples with large doses of arsenic, the defects resulting from vacancies and/or micro cluster precipitates are seen in transmission electron micrographs. Materials properties are used to explain microwave heating of silicon and demonstrate that the damage created in the implantation process serves to enhance microwave absorption.


Sign in / Sign up

Export Citation Format

Share Document