Evaluation of the Interface Structure During Stranski-Krastanov Growth of GE(SI) on Si (001)

1991 ◽  
Vol 238 ◽  
Author(s):  
M. Albrecht ◽  
H. P. Strunk ◽  
P. O. Hansson ◽  
E. Bauser

ABSTRACTThe initial stages of heteroepitaxial growth of Ge0.85 Si0.15 on Si(001) grown from Bi solution (liquid phase epitaxy) are studid by transmission electron microscopy. Stranski-Krastanov growth is observed to take place. After growth of a pseudomorphic Ge0.85 Si0.15 layer of 4 monolayer thickness, islands form and grow pseudomorphically up to a thickness of 30 nm. Then first misfit dislocations form. The formation process of these dislocations is analyzed and discussed in terms of half loop nucleation at the surface and dislocation glide. Evidence for glide on (110) planes is put forward.

2011 ◽  
Vol 1324 ◽  
Author(s):  
Y. Wang ◽  
P. Ruterana ◽  
L. Desplanque ◽  
S. El Kazzi ◽  
X. Wallart

ABSTRACTHigh resolution transmission electron microscopy in combination with geometric phase analysis is used to investigate the interface misfit dislocations, strain relaxation, and dislocation core behavior versus the surface treatment of the GaAs for the heteroepitaxial growth of GaSb. It is pointed out that Sb-rich growth initiation promotes the formation of a high quality network of Lomer misfit dislocations that are more efficient for strain relaxation.


1983 ◽  
Vol 27 ◽  
Author(s):  
A. M. Guzman ◽  
T. Yoshiie ◽  
C. L. Bauer ◽  
M. H. Kryder

ABSTRACTAmorphization by ion implantation has been investigated in films of (SmYGdTm)3Ga0.4Fe4.6O12 garnet by transmission electron microscopy, incorporating a special cross-sectioning technique. These films were produced by liquid phase epitaxy on (111) garnet substrates and subsequently implanted with ions of deuterium at 60 keV and doses ranging from 0.50 to 4.5×1016 D2+/cm2 and ions of oxygen at 110 keV and doses ranging from 0.95 to 8.6×1014O+/cm2. The amorphization process proceeds in separate stages involving the formation of isolated amorphous regions, merging of these regions into a continuous band and subsequent propagation of the amorphous band toward the implanted surface. Details of these processes are interpreted in terms of various atomic displacement mechanisms.


2003 ◽  
Vol 784 ◽  
Author(s):  
I. B. Misirlioglu ◽  
A. L. Vasiliev ◽  
M. Aindow ◽  
R. Ramesh ◽  
S. P. Alpay

ABSTRACTEpitaxial Ba0.6Sr0.4TiO3 films were grown onto (001) LaAlO3 by pulsed-laser deposition, and the dislocation structures of the films were investigated using transmission electron microscopy. Misfit dislocations with a periodicity of about 7 nm and Burgers vectors b = a<100> were observed at the interface. High densities of threading dislocations was present in the films with Burgers vector b = a<100>. The observations reveal that threading dislocations are not generated as the result of half-loop climb from the deposit surface as proposed previously, but are instead formed when misfit dislocations are forced away from the interface during island coalescence.


Sign in / Sign up

Export Citation Format

Share Document