TEM Studies of Alloy Clustering in InAlAs Strained Layers

1991 ◽  
Vol 240 ◽  
Author(s):  
F. Peiro ◽  
A. Cornet ◽  
J. R. Morante ◽  
S. A. Clark ◽  
R. H. Williams

ABSTRACTTransmission electron microscopy studies have been performed to characterise InxAl1−xAS layers grown by Molecular Beam Epitaxy on (100) InP substrates. The first observations of compositional nonuniformities in strained InAlAs layers are reported. The coarse quasiperiodic structure present in each sample has been found to be dependent upon the growth parameters and the sample characteristics such as strain, thickness and x value.

2016 ◽  
Vol 30 (20) ◽  
pp. 1650269 ◽  
Author(s):  
Thi Giang Le ◽  
Minh Tuan Dau

High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge[Formula: see text]Mn[Formula: see text]/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.


1987 ◽  
Vol 102 ◽  
Author(s):  
Richard J. Dalby ◽  
John Petruzzello

ABSTRACTOptical and transmission electron microscopy have been used to study cracks appearing in ZnSe/ZnSxSe1−x (x ∼ 0.38) superlattices grown by Molecular Beam Epitaxy. It Is shown that when a fracture occurs it is confined, in most cases, to the superlattice and propagates along <011> cleavage directions in these <001> oriented epilayers. Cracks were not observed in all superlattices and their onset is discussed in relation to sulfur concentration, overall superlattice height, individual superlattice layer thicknesses, and stress, tensile or compressive, due to lattice mismatch and thermal expansion differences between buffer layer and superlattice. It was found that by adjusting the controllable parameters, cracks in the superlattices could be eliminated. Orientation and density of these features have been related to asynnmetric cracking associated with the zincblende structure of these II-VI materials. Experimental results are shown to be in agreement with theoretical predictions of critical heights for the onset of cracking.


2001 ◽  
Vol 43 (1) ◽  
pp. 151-156 ◽  
Author(s):  
V. V. Mamutin ◽  
N. A. Cherkashin ◽  
V. A. Vekshin ◽  
V. N. Zhmerik ◽  
S. V. Ivanov

1998 ◽  
Vol 13 (12) ◽  
pp. 3571-3579 ◽  
Author(s):  
U. Kaiser ◽  
S. B. Newcomb ◽  
W. M. Stobbs ◽  
M. Adamik ◽  
A. Fissel ◽  
...  

The effects of different growth parameters on the microstructure of the SiC films formed during simultaneous two-source molecular-beam-epitaxial (MBE) deposition have been investigated. Substrate temperatures as low as 750–900 °C have been used. The relationship between a number of different growth morphologies and deposition conditions has been established. The formation of single-crystal 3C films has been found to occur at low growth rates but within a limited Si: C adatom ratio. A combination of transmission electron microscopy (TEM) and atomic force microscopy (AFM) has been used to examine the different films, and the results of these investigations are described.


1993 ◽  
Vol 317 ◽  
Author(s):  
G. Aragon ◽  
M.J. De Castro ◽  
S.I. Molina ◽  
Y. Gonzalez ◽  
L. Gonzalez ◽  
...  

ABSTRACTThe defect structure of GaAsP layer grown by Atomic Layer Molecular Beam Epitaxy on (001) GaAs substrate has been studied by Transmission Electron Microscopy. The phosphorous content and the epilayer thickness have been changed below 25% and 1μm respectively. Three kinds of defect structure have been found: a) α-δ fringes at the interface for coherent epilayer, b) Misfit dislocation for thin epilayers and c) Multiple cracks normal to the interface and parallel to one <110> direction for thick epilayers.


Sign in / Sign up

Export Citation Format

Share Document