Fabrication of Sol-Gel Derived Ferroelectric Plzt (9/65/35) Optical Waveguides

1991 ◽  
Vol 243 ◽  
Author(s):  
P.F. Baude ◽  
C. Ye ◽  
T. Tamagawa ◽  
D.L. Polla

AbstractCrack free transparent ferroelectric PLZT (9/65/35) thin films were deposited on silicon substrates using the sol-gel deposition technique. An intermediate layer of PLT was used to improve the PLZT's optical quality and to reduce the amount of film cracking. Wet chemical, plasma and reactive ion etching are investigated as means of realizing the necessary waveguide structures. Waveguiding is observed in 2-4mm long PLZT (9/65/35) fabricated by reactive ion beam etching.

1993 ◽  
Vol 310 ◽  
Author(s):  
P. F. Baude ◽  
C. Ye ◽  
D.L. Polla

AbstractWet chemical, reactive ion etching and reactive ion-beam etching of sol-gel prepared PZT (54/46) [Pb(Zr,Ti)O3], Lanthanum doped PZT [PLZT (9/65/35)] and LiTaO3 have been investigated. Wet chemical etching using an HCI-HF solution, reactive-ion etching using a SF6 plasma and chemically assisted ion-beam etching (CAIBE) using a xenon plasma and chlorine reactive gas were used. Etch rates for each method were determined and the ability to define small features in the thin film ferroelectric was investigated. It was found that for structures smaller than approximately 20 × 20 μm2, chemically assisted ion beam etching provided by far the best results. 3 × 3 μm2 capacitor and 2 μm wide optical waveguide structures in PZT, PLZT respectively, were successfully fabricated using a CAIBE system. An etch depth monitor enabled accurate in-situ etch rate monitoring of the PLZT and PZT thin films.


2004 ◽  
Vol 817 ◽  
Author(s):  
M. Gaidi ◽  
L. Stafford ◽  
M. Chaker ◽  
J. Margot ◽  
M. Kulishov

AbstractStrontium-titanate-oxide (STO) thin films have been deposited on silicon substrates by means of a reactive pulsed-laser-deposition technique. The influence of the oxygen deposition pressure on the microstructural properties of the films has been investigated by means of various characterization techniques. It was found that the crystalline quality of the film significantly deteriorates as the oxygen pressure increases. This is accompanied by an increase of the film microporosity. The microstructure of the film is found to directly impact the optical quality of the films. In particular, due to the higher density and crystallinity of the films deposited at lower oxygen pressure, films characterized by lower optical losses can be achieved in such conditions. These films have been used in the context of the development of optical waveguides. For this purpose, patterning of the STO films was investigated using sputter-etching with a high-density argon plasma operated in the very low pressure regime. Highly anisotropic features have been produced with high etch rate and good selectivity over resist. Preliminary results indicate the STO films can be successfully incorporated in functional waveguides.


1984 ◽  
Vol 23 (6) ◽  
pp. 777 ◽  
Author(s):  
Bei Zhang ◽  
Jean-Marc Delavaux ◽  
William S. C. Chang

2009 ◽  
Vol 1222 ◽  
Author(s):  
Pengzhao Gao ◽  
Evgeny V. Rebrov ◽  
Jaap C. Schouten ◽  
Richard Kleismit ◽  
John Cetnar ◽  
...  

AbstractNanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by sol–gel method on polycrystalline silicon substrates. The morphology and microwave absorption properties of the films calcined in the 673–1073 K range were studied by using XRD, AFM, near–field evanescent microwave microscopy, coplanar waveguide and direct microwave heating measurements. All films were uniform without microcracks. The increase of the calcination temperature from 873 to 1073 K and time from 1 to 3h resulted in an increase of the grain size from 12 to 27 nm. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2–15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315–355 K was observed in the film close to the critical grain size of 21 nm in diameter marked by the transition from single– to multi–domain structure of nanocrystals in Ni0.5Zn0.5Fe2O4 film and by a maximum in its coercivity.


1999 ◽  
Vol 606 ◽  
Author(s):  
S. Bhaskar ◽  
S. B. Majumder ◽  
P. S. Dobal ◽  
R. S. Katiyar ◽  
A. L. M. Cruz ◽  
...  

AbstractIn the present work we have optimized the process parameters to yield homogeneous, smooth ruthenium oxide (RuO2) thin films on silicon substrates by a solution deposition technique using RuCl3.×.H2O as the precursor material. Films were annealed in a temperature range of 300°C to 700°C, and it was found that RuO2 crystallizes at a temperature as low as 400°C. The crystallinity of the films improves with increased annealing temperature and the resistivity decreases from 4.86µΩ-m (films annealed at 400°C) to 2.94pµΩ (films annealed at 700°C). Ageing of the precursor solution has a pronounced effect on the measured resistivities of RuO2 thin films. It was found that the measured room temperature resistivities increases from 2.94µΩ-m to 45.7µΩ-m when the precursor sol is aged for aged 60 days. AFM analysis on the aged films shows that the grain size and the surface roughness of the annealed films increase with the ageing of the precursor solution. From XPS analysis we have detected the presence of non-transformed RuCl3 in case of films prepared from aged solution. We propose, that solution ageing inhibits the transformation of RuCl3 to RuO2 during the annealing of the films. The deterioration of the conductivity with solution ageing is thought to be related with the chloride contamination in the annealed films.


1995 ◽  
Vol 10 (12) ◽  
pp. 3124-3128 ◽  
Author(s):  
Z.S. Zheng ◽  
J.R. Liu ◽  
X.T. Cui ◽  
W.K. Chu ◽  
S.P. Rangarajan ◽  
...  

The simultaneous determination of light element contamination levels and accurate nitrogen-to-metal ratios in nitride thin films deposited on silicon substrates is demonstrated by using α-particle beam energies in the range 3–4 MeV. In this energy range, significant light element sensitivity enhancements are observed, while the heavy elements show classical Rutherford behavior. The use of resonance scattering at different resonance energies is shown to be the method of choice for analyzing BN films on silicon. Also, a technique is suggested for analyzing very thin films in which an aluminum foil substrate and buffer layer are used to enhance sensitivities.


Sign in / Sign up

Export Citation Format

Share Document