Chemical Processing and Properties of Nanocrystalline BaTiO3

1992 ◽  
Vol 271 ◽  
Author(s):  
Z. Xu ◽  
H. K. Chae ◽  
M. H. Frey ◽  
D. A. Payne

ABSTRACTBarium titanate (BaTiO3) thin layers were prepared by sol-gel processing. Details are reported for the synthesis route from methoxyethoxide precursors. Partially hydrolyzed solutions were spin-cast onto metallized silicon substrates, and a multilayering technique was used to develop sub-micron structures. Information is reported on the thermal processing conditions used and the development of structure. Crystallization started at 600°C and was fully developed by 700°C. The room temperature structure was cubic, and the grain size was 25–50 nm. Details are reported for the dielectric properties. Ferroelectricity was not observed. Dielectric constant (200–300) increased with increasing grain size, and was stable with respect to temperature, field and frequency. The properties are attractive for potential integrated capacitor applications.

1999 ◽  
Vol 596 ◽  
Author(s):  
Sang M. Park

AbstractStress development in thin layers of PbZr0.53Ti0.47O3 (PZT) and PbTiO3 (PT) prepared by sol-gel processing was monitored by in situ laser reflectance measurements. Layers were spin coated onto silicon substrates and thermally cycled to 600°C and 650°C. The shrinkage normal to the film plane was determined by in situ ellipsometry and scanning electron microscopy. Both PZT and PT multilayers showed a similar stress behavior on heating, but quite different behavior on cooling. As the film became dense at high temperatures, total stress was dominated by the thermal expansion mismatch between the oxide layer and the substrate. On cooling, the PT multilayers, which already crystallized into the perovskite structure, ended nearly stress free at room temperature, whereas mostly amorphous PZT multilayers were under a high tensile stress. Densification in PZT layers appeared to occur between 370°C and 520°C. At near 370°C the shrinkage mode for a single PZT layer was also observed to change substantially. A two-stage sintering process employing 450°C-sintering and 650°C-crystallization was found to be as effective as direct furnace insertion method in producing a dense film.


2009 ◽  
Vol 1222 ◽  
Author(s):  
Pengzhao Gao ◽  
Evgeny V. Rebrov ◽  
Jaap C. Schouten ◽  
Richard Kleismit ◽  
John Cetnar ◽  
...  

AbstractNanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by sol–gel method on polycrystalline silicon substrates. The morphology and microwave absorption properties of the films calcined in the 673–1073 K range were studied by using XRD, AFM, near–field evanescent microwave microscopy, coplanar waveguide and direct microwave heating measurements. All films were uniform without microcracks. The increase of the calcination temperature from 873 to 1073 K and time from 1 to 3h resulted in an increase of the grain size from 12 to 27 nm. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2–15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315–355 K was observed in the film close to the critical grain size of 21 nm in diameter marked by the transition from single– to multi–domain structure of nanocrystals in Ni0.5Zn0.5Fe2O4 film and by a maximum in its coercivity.


1999 ◽  
Vol 606 ◽  
Author(s):  
S. Bhaskar ◽  
S. B. Majumder ◽  
P. S. Dobal ◽  
R. S. Katiyar ◽  
A. L. M. Cruz ◽  
...  

AbstractIn the present work we have optimized the process parameters to yield homogeneous, smooth ruthenium oxide (RuO2) thin films on silicon substrates by a solution deposition technique using RuCl3.×.H2O as the precursor material. Films were annealed in a temperature range of 300°C to 700°C, and it was found that RuO2 crystallizes at a temperature as low as 400°C. The crystallinity of the films improves with increased annealing temperature and the resistivity decreases from 4.86µΩ-m (films annealed at 400°C) to 2.94pµΩ (films annealed at 700°C). Ageing of the precursor solution has a pronounced effect on the measured resistivities of RuO2 thin films. It was found that the measured room temperature resistivities increases from 2.94µΩ-m to 45.7µΩ-m when the precursor sol is aged for aged 60 days. AFM analysis on the aged films shows that the grain size and the surface roughness of the annealed films increase with the ageing of the precursor solution. From XPS analysis we have detected the presence of non-transformed RuCl3 in case of films prepared from aged solution. We propose, that solution ageing inhibits the transformation of RuCl3 to RuO2 during the annealing of the films. The deterioration of the conductivity with solution ageing is thought to be related with the chloride contamination in the annealed films.


2020 ◽  
Author(s):  
Christiane Adler ◽  
Igor Krivtsov ◽  
Dariusz Mitoraj ◽  
Lucía dos Santos-Gómez ◽  
Santiago García-Granda ◽  
...  

In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for photoelectrochemical (PEC) applications, the fabrication of high-quality PCN photoelectrodes has been a largely elusive goal to date. Here we tackle this challenge by devising, for the first time, a sol–gel approach that enables facile preparation of photoanodes based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol–gel process capitalizes on the use of a water-soluble PHI precursor composed of nanosized (~10 nm) particles that allows formation of a non-covalent hydrogel. The hydrogel can be deposited on a conductive substrate resulting in formation of mechanically stable porous polymeric thin layers (~400 nm), in contrast to the commonly obtained loosely attached thick particulate coatings. The resulting photoanodes exhibit unprecedented PEC performance in methanol reforming in neutral pH electrolytes with photocurrents of up to 177±27 mA cm<sup>-2</sup> (1 sun illumination) and 320±40 mA cm<sup>-2</sup> (2 sun illumination) at 1.23 V vs. RHE, maintaining such high photocurrents even down to ~0 V vs. RHE. These parameters permit effective operation even without any external electric bias, as demonstrated by bias-free photoreforming of methanol and glycerol, and highly selective (~100%) photooxidation of 4-methoxybenzyl alcohol (4-MBA). The robust binder-free films derived from sol–gel processing of water-soluble PCN thus represent a new paradigm for high-performance ‘soft-matter’ photoelectrocatalytic systems, and pave the way for further applications in which high-quality PCN films are required.


2020 ◽  
Author(s):  
Christiane Adler ◽  
Igor Krivtsov ◽  
Dariusz Mitoraj ◽  
Lucía dos Santos-Gómez ◽  
Santiago García-Granda ◽  
...  

In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for various applications, the fabrication of high-quality, binder-free PCN films and electrodes has been a largely elusive goal to date. Here we tackle this challenge by devising, for the first time, a sol–gel approach that enables facile preparation of thin films based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol–gel process capitalizes on the use of a water-soluble PHI precursor that allows formation of a non-covalent hydrogel. The hydrogel can be deposited on conductive substrates resulting in formation of mechanically stable polymeric thin layers. The resulting photoanodes exhibit unprecedented PEC performance in alcohol reforming and selective (~100%) conversions with very high photocurrents down to ~0 V vs. RHE, which enables even effective operation under bias-free conditions. The robust binder-free films derived from sol–gel processing of water-soluble PCN thus represent a new paradigm for high-performance ‘soft-matter’ photoelectrocatalytic systems, and pave the way for further applications in which high-quality PCN films are required.


2004 ◽  
Vol 32 (1-3) ◽  
pp. 117-123 ◽  
Author(s):  
Hee-Jung Im ◽  
Carl Willis ◽  
Suree Saengkerdsub ◽  
Rajev Makote ◽  
Michelle D. Pawel ◽  
...  

1996 ◽  
Vol 433 ◽  
Author(s):  
S. Trolier-Mckinstry ◽  
C. A. Randall ◽  
J. P. Maria ◽  
C. Theis ◽  
D. G. Schlom ◽  
...  

AbstractFerroelectric thin films typically differ from bulk ceramics in terms of both the average grain size and the degree of stress imposed on the film by the substrate. Studies on bulk ceramics have demonstrated that the number of domain variants within grains depends on the grain size for sizes <˜lμm. This can diminish the poling efficiency of the material. Since most thin films show primary grain sizes well below a micron, similar effects should be observed in films. In addition, since the perovskite ferroelectrics contain ferroelastic as well as ferroelectric domains, it seems clear that stress in thin films may markedly alter the degree to which domain walls contribute to the observed properties. In this paper, the relative importance of these factors are discussed for several types of ferroelectric thin films. Films have been prepared by pulsed laser deposition, magnetron sputtering, and by sol-gel processing. It has been found that epitaxial BaTiO3 films are ferroelectric at 77K down to thicknesses as low as ˜ 60nm. Data on the low and high field electrical properties are reported as a function of temperature, the film crystallinity, and film thickness for representative perovskite films.


Sign in / Sign up

Export Citation Format

Share Document