Initial Stage of Heteroepitaxial Growth of SiC on Si by Gas Source MBE Using Hydrocarbon Radicals

1993 ◽  
Vol 318 ◽  
Author(s):  
Takashi Fuyuki ◽  
Yoichiro Tarui ◽  
Tomoaki Hatayama ◽  
Hiroyuki Matsunami

ABSTRACTHeteroepitaxial growth of 3C-SiC on Si in gas source molecular beam epitaxy ( GSMBE ) was carried out by a combination of carbonization of a Si surface and subsequent crystal growth on it using hydrocarbon radicals and Si2H6. The carbonization process and the initial stage of the subsequent growth during the intermittent supply of Si2H6 have been studied by a reflection high-energy electron diffraction (RHEED) observation. A Si surface was chemically converted to 3C-SiC at 750°C, and homoepitaxial growth on the carbonized layer could be obtained at 1000°C. Si atoms generated by thermal decomposition on a surface would react with hydrocarbon radicals, forming SiC through a layer by layer growth mode.

1993 ◽  
Vol 127 (1-4) ◽  
pp. 213-216 ◽  
Author(s):  
Toshinari Fujimori ◽  
Satoru Nagao ◽  
Hideki Gotoh

2002 ◽  
Vol 749 ◽  
Author(s):  
Masao Kamiko ◽  
Hiroaki Chihaya ◽  
Hiroyuki Mizuno ◽  
Junhua Xu ◽  
Isao Kojima ◽  
...  

ABSTRACTWe have investigated the effect of Bi on the homoepitaxial growth of Fe(100) by means of reflection high-energy electron diffraction (RHEED). It was clearly found that Bi induces layer-by-layer growth of Fe on Fe(100)-c(2×2)O reconstruction surface. The result of the dependence of the growth behavior as a function of Bi layer thickness suggests that there is optimum amount of Bi surfactant layer that induces the smoother layer-by-layer growth. A strong surface segregation of Bi was found at the top of surface and acts as a surfactant by promoting the interlayer transport.


2001 ◽  
Vol 666 ◽  
Author(s):  
Kazuo Shimoyama ◽  
Kousuke Kubo ◽  
Tatsuro Maeda ◽  
Kikuo Yamabe

ABSTRACTHigh-quality thin films of BaTiO3 and SrTiO3 on SrTiO3 substrate were obtained by shutting off the oxygen supply during growth. Epitaxial growths were carried out with molecular-beam epitaxy (MBE) under extremely low oxygen partial pressure (pO2 < 1×10−8 Pa). Although only Ba(Sr) and Ti metals were supplied without introducing oxidant during the growth, clear reflection high-energy electron diffraction (RHEED) intensity oscillations from layer-by-layer growth were observed. The deposited films were found to have approximately stoichiometric compositions of BaTiO3 and SrTiO3. Oxygen was automatically fed from the substrate during the growths. It was found that the BaTiO3/SrTiO3 interface was abrupt without intermixing, despite a considerable amount of oxygen seems to have moved from the substrate to the film through the interface.


1992 ◽  
Vol 281 ◽  
Author(s):  
G. Springholz ◽  
G. Bauer

ABSTRACTUsing reflection high energy electron diffraction (RHEED), the heteroepitaxy of EuTe on PbTe (111) by molecular beam epitaxy (MBE) was investigated. The resulting EuTe (111) surfaces exhibit different surface reconstructions corresponding to a Te-stabilized or a Eu-stabilized surface. We have observed perfect 2D layer-by-layer heteroepitaxial growth and RHEED intensity oscillations only for a small range of growth conditions. Using such optimum conditions, we have fabricated strained PbTe/EuTe superlattices with superior structural perfection, as shown by high resolution x-ray diffraction.


1996 ◽  
Vol 441 ◽  
Author(s):  
M. Iwanami ◽  
M. Kamiko ◽  
T. Matsumoto ◽  
R. Yamamoto

AbstractSurfactant epitaxy has been expected to be a powerful method to improve thin film growth from three dimensional island mode to layer-by-layer growth one. Supposing that Pb is the surfactant and Ni is the substrate and deposition metal, we have investigated how the surfactant atoms segregate on surface by computer simulations using the modified embedded atom method. To verify the effect of Pb on the homoepitaxial growth of Ni, we have performed a series of experiments on the growth of Ni on Ni(100) surface with and without Pb using reflection high energy electron diffraction (RHEED). It was clearly found that Pb induced layer-by-layer growth of Ni metal film. The result of the dependence of the growth behavior on the thickness of Pb layer suggests that there is the most suitable thickness of a surfactant layer which is not always the monolayer.


2006 ◽  
Vol 13 (02n03) ◽  
pp. 201-207 ◽  
Author(s):  
MASAO KAMIKO ◽  
HIROAKI CHIHAYA ◽  
WATARU SUGIMOTO ◽  
RYOICHI YAMAMOTO ◽  
SANGMUN OH ◽  
...  

We have investigated the effect of Bi on the heteroepitaxial growth of Co on Cu by reflection high-energy electron diffraction (RHEED) measurements. It was found that Bi enhanced the layer-by-layer growth of Co on the Cu (111) surfaces at 100°C. The dependence of the growth on Bi layer thickness suggested that there existed a suitable amount of Bi surfactant layer that enhanced smoother layered growth. On the contrary, for the case of Co growth on Cu (100), Bi depressed the layer-by-layer growth of Co on Cu (100). The surface segregation effect of Bi was also studied by Auger electron spectroscopy (AES).


2006 ◽  
Vol 21 (11) ◽  
pp. 2801-2809 ◽  
Author(s):  
C. Chen ◽  
M.C. Plante ◽  
C. Fradin ◽  
R.R. LaPierre

GaP–GaAsP segmented nanowires (NWs), with diameters ranging between 20 and 500 nm and lengths between 0.5 and 2 μm, were catalytically grown from Au particles on a GaAs (111)B substrate in a gas source molecular beam epitaxy system. The morphology of the NWs was either pencil-shaped with a tapered tip or rod-shaped with a constant diameter along the entire length. Stacking faults were observed for most NWs with diameters greater than 30 nm, but thinner ones tended to exhibit fewer defects. Moreover, stacking faults were more likely found in GaAsP than in GaP. The composition of the pencil NWs exhibited a core–shell structure at the interface region, and rod-shaped NWs resulted in planar and atomically abrupt heterointerfaces. A detailed growth mechanism is presented based on a layer-by-layer growth mode for the rod-shaped NWs and a step-flow growth mode for the tapered region of the pencil NWs.


Sign in / Sign up

Export Citation Format

Share Document