Intelligent Material Design Using Shape Memory Alloy

1994 ◽  
Vol 360 ◽  
Author(s):  
Yasiubumi Furuya

AbstractRecently, shape memory alloy(SMA) is regarded as one promising material element natively with intelligent functions. I introduce the fundamental design concept and several trials for developing intelligent(smart) materials and structures by using shape memory alloy. Moreover, I introduce our recent works and point out the necessity for developing fundamental techniques to realize the intelligent materials using SMA.

2019 ◽  
Vol 12 (1) ◽  
pp. 77-82 ◽  
Author(s):  
A. Vasanthanathan ◽  
S. Menaga ◽  
K. Rosemi

Background:The vital role of smart materials in the field of aircraft, spacecraft, defence, electronics, electrical, medical and healthcare industries involve sensing and actuating for monitoring and controlling applications. The class of smart materials are also named as active materials or intelligent materials or adaptive materials. These materials act intelligently based upon the environmental conditions. Structures incorporated with smart materials are named as smart structures.Methods:The principal objective of the present paper is to explore a comprehensive review of various smart materials viz. piezoelectric materials, Shape Memory Alloy, micro sensors and fibre optic sensors. The significance of these intelligent materials in various fields are also deliberately presented in this work from the perspective of Patents and literatures test data.Results:Smart Materials possesses multifunctional capabilities. The smart materials viz. piezoelectric materials, Shape Memory Alloy, micro sensors and fibre optic sensors are embedded with structures like aircraft, spacecraft, automotive, bridges, and buildings for the purpose of exhibiting Structural Health Monitoring system. Smart materials are finding increasing applications in the present aircraft, spacecraft, automotive, electronics and healthcare industries.Conclusion:Innovative ideas would become reality by integrating the any structure with Smart Materials.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Andres Osorio Salazar ◽  
Yusuke Sugahara ◽  
Daisuke Matsuura ◽  
Yukio Takeda

In this paper, the concept of scalability for actuators is introduced and explored, which is the capability to freely change the output characteristics on demand: displacement and force for a linear actuator, angular position and torque for a rotational actuator. This change can either be used to obtain power improvement (with a constant scale factor), or to improve the usability of a robotic system according to variable conditions (with a variable scale factor). Some advantages of a scalable design include the ability to adapt to changing environments, variable resolution of step size, ability to produce designs that are adequate for restricted spaces or that require strict energy efficiency, and intrinsically safe systems. Current approaches for scalability in actuators have shortcomings: the method to achieve scalability is complex, so obtaining a variable scaling factor is challenging, or they cannot scale both output characteristics simultaneously. Shape Memory Alloy (SMA) wire-based actuators can overcome these limitations, because its two output characteristics, displacement and force, are physically independent from each other. In this paper we present a novel design concept for linear scalable actuators that overcome SMA design and scalability limitations by using a variable number of SMA wires mechanically in parallel, immersed in a liquid that transmits heat from a separate heat source (wet activation). In this concept, more wires increase the maximum attainable force, and longer wires increase the maximum displacement. Prototypes with different number of SMA wires were constructed and tested in isometric experiments to determine force vs. temperature behavior and time response. The heat-transmitting liquid was either static or flowing using pumps. Scalability was achieved with a simple method in all tested prototypes with a linear correlation of maximum force to number of SMA wires. Flowing heat transmission achieved higher actuation bandwidth.


Author(s):  
Alexander Czechowicz ◽  
Sven Langbein

Shape memory alloys (SMA) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape through the means of thermal activation, they are suitable as actuators for mechatronical systems. Despite of the advantages shape memory alloy actuators provide, these elements are only seldom integrated by engineers into mechatronical systems. Reasons are the complex characteristics, especially at different boundary conditions and the missing simulation- and design tools. Also the lack of knowledge and empirical data are a reason why development projects with shape memory actuators often lead to failures. This paper deals with the dynamic properties of SMA-actuators (Shape Memory Alloy) — characterized by their rate of heating and cooling procedures — that today can only be described insufficiently for different boundary conditions. Based on an analysis of energy fluxes into and out of the actuator, a numerical model of flat-wire used in a bow-like structure, implemented in MATLAB/SIMULINK, is presented. Different actuation parameters, depending on the actuator-geometry and temperature are considered in the simulation in real time. Additionally this publication sums up the needed empirical data (e.g. fatigue behavior) in order to validate the numerical two dimensional model and presents empirical data on SMA flat wire material.


2018 ◽  
Vol 30 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Venkata Siva C Chillara ◽  
Leon M Headings ◽  
Ryohei Tsuruta ◽  
Eiji Itakura ◽  
Umesh Gandhi ◽  
...  

This work presents smart laminated composites that enable morphing vehicle structures. Morphing panels can be effective for drag reduction, for example, adaptive fender skirts. Mechanical prestress provides tailored curvature in composites without the drawbacks of thermally induced residual stress. When driven by smart materials such as shape memory alloys, mechanically-prestressed composites can serve as building blocks for morphing structures. An analytical energy-based model is presented to calculate the curved shape of a composite as a function of force applied by an embedded actuator. Shape transition is modeled by providing the actuation force as an input to a one-dimensional thermomechanical constitutive model of a shape memory alloy wire. A design procedure, based on the analytical model, is presented for morphing fender skirts comprising radially configured smart composite elements. A half-scale fender skirt for a compact passenger car is designed, fabricated, and tested. The demonstrator has a domed unactuated shape and morphs to a flat shape when actuated using shape memory alloys. Rapid actuation is demonstrated by coupling shape memory alloys with integrated quick-release latches; the latches reduce actuation time by 95%. The demonstrator is 62% lighter than an equivalent dome-shaped steel fender skirt.


2021 ◽  
Vol 1019 ◽  
pp. 3-11
Author(s):  
Niranjan Pattar ◽  
S.F. Patil ◽  
Pratik Patil ◽  
Iranna Anikivi ◽  
Shridhar Hiremath

Embedding smart materials in the composite to enhance mechanical strength have become a research hotspot owing to their unique properties. The present research also focus on novel way to fabricate composite by embedding Shape Memory Alloy (SMA) wire and montmorillonite (MMT) nanoclay by varying clay concentration (0-7 wt.%). The extent of dispersion of nanoclay in epoxy resin was studied using Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD). Fabricated samples were examined for tensile, flexural and impact characteristics. Scanning Electron Microscopy (SEM) was used to study the adhesion, delamination and damage occurred within the composite due to tensile loading. Results shows that the tensile strength, flexural strength and impact energy of SMA/MMT/glass/epoxy composite was improved by 23%, 21% and 57% respectively, when it was compared with composite with glass/epoxy composite.


Author(s):  
S Farzaneh Hoseini ◽  
S Ali MirMohammadSadeghi ◽  
Alireza Fathi ◽  
Hamidreza Mohammadi Daniali

Shape memory alloys are among the highly applicable smart materials that have recently appealed to scientists from various fields of study. In this article, a novel shape memory alloy actuator, in the form of a rod, is introduced, and an adaptive model predictive control system is designed for position control of the developed actuator. The need for such an advanced control system emanates from the fact that modeling and controlling of shape memory alloy actuators are thwarted by their hysteresis nonlinearity, dilatory response, and high dependence on environmental conditions. Real-time identification and dynamic parameter estimation of the model are addressed according to orthogonal Laguerre functions and recursive least square algorithm. In the end, the designed control system is implemented on the experimental setup of the fabricated shape memory alloy actuator. It is observed that the designed control system successfully tracks the variable step and sinusoidal control references with startling accuracy of ±1 μm.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Hoda Abuzied ◽  
Ayman Abbas ◽  
Mohamed Awad ◽  
Hesham Senbel

Abstract Active disassembly (AD) is an emerging field of research in design for disassembly that enables a cost-effective nondestructive separation of product components. It is based on using active joints and fasteners that enables the self-disassembly of products without any direct contact between the product and the operator, where these joints and fasteners must be inserted in the product during its design and manufacturing phases. Generally, active joints and fasteners are made of smart materials such as shape memory alloys (SMAs), that can generate the necessary disassembly forces required to separate the different components of the product. Most of the exerted effort in this field of research was focused on separating products requiring small disassembly forces either in the electronic or automotive sectors. All these active disassembly applications were based on using shape memory alloy snap fits, clips, or wires that are characterized by their ability to generate small forces with large displacements. As, up to the authors knowledge, none of the exerted efforts were concerned with investigating the possibility of using the large disassembly forces that could be generated using shape memory alloy actuators in large force active disassembly applications. Consequently, the presented research aims to examine the possibility of applying active disassembly with products requiring large disassembly forces, having tapered surfaces and large mechanical structure. By presenting two case studies to validate the possibility of using active disassembly with large force applications, in addition to investigating the capability of using shape memory alloy actuators assembled either concentric or eccentric with the product structure.


Author(s):  
Joel Ertel ◽  
Stephen Mascaro

This paper presents a conceptual design and preliminary analysis for a biomimetic robotic heart. The purpose of the robotic heart is to distribute hot and cold fluid to robotic muscles composed of wet shape-memory alloy (SMA) actuators. The robotic heart is itself powered by wet SMA actuators. A heart design concept is proposed and the feasibility of self-sustaining motion is investigated through simulation and experiment. The chosen design employs symmetric pumping chambers for hot and cold fluid. Analysis of this design concept shows that there exists a range of design parameters that will allow the heart to output more fluid than it uses. Additionally, it is shown that the heartbeat rate decreases as the system increases in size, and that the number of actuators and their length limit the power output of the pump. Experimental results from a prototype heart agree with the predicted trends from theoretical analysis and simulation.


Author(s):  
Nitin Uppal ◽  
Panos S. Shiakolas

The use of femtosecond lasers for the micromachining of engineering materials with micro and submicron size features is slowly but steadily increasing. This increase though presents challenges in understanding the interaction mechanism of femtosecond laser pulses with a material and defining process parameters for quality machining. This manuscript will present the setup for a 3DOF femtosecond laser microfabrication (FLM) system and its use in studying the ablation (single and multi shot) characteristics and incubation coefficient of nickel-titanium (NiTi) shape memory alloy. Understanding of these characteristics could allow for the identification of new applications of smart materials in the macro, micro, nano and MEMS domains.


Sign in / Sign up

Export Citation Format

Share Document