Crack Velocity Measurements in Sea Ice

1994 ◽  
Vol 362 ◽  
Author(s):  
Oleg Gluschenkov ◽  
Victor Petrenko

AbstractTo study crack dynamics in sea ice fast measurements of ice electrical resistance and an electromagnetic emission (EME) from cracks were used. The sample dimensions ranged from 0.05 to 30 meters. In a laboratory grown fresh water ice crack velocities varied from a few hundreds to a thousand meters per second while in the natural sea ice crack velocity was very low, about 10 m/s. This remarkable difference in the crack velocities is likely due to the dynamic resistance of unfrozen water in brine pockets and channels and to the high ductility of sea ice. It was found that the cracks propagate in ice discontinuously owing to the strong interaction with such microstructural elements as liquid inclusions and grain boundaries. The high sensitivity of the method allowed to detect nucleation of very first microcracks.

1962 ◽  
Vol 4 (31) ◽  
pp. 25-52 ◽  
Author(s):  
W. F. Weeks

AbstractTo resolve some of the factors causing strength variation in natural sea ice, fresh water and five different NaCl–H2O solutions were frozen in a tank designed to simulate the one-dimensional cooling of natural bodies of water. The resulting ice was structurally similar to lake and sea ice. The salinity of the salt ice varied from 1‰ to 22‰. Tables of brine volumes and densities were computed for these salinities in the temperature range 0° to −35° C. The ring-tensile strength σ of fresh-water ice was found to be essentially temperature independent from −10° to −30°C., with an average value of 29.6±8.5 kg./cm.2at −10° C. The strength of salt ice at temperatures above the eutectic point (–21.2° C.) significantly decreases with brine volumev;. The σ–axis intercept of this line is comparable to the a values determined for fresh ice indicating that there is little, if any, difference in stress concentration between sea and lake ice as a result of the presence of brine pockets. The strength of ice containing NaCl.2H2O is slightly less than the strength of freshwater ice and is independent of the volume of solid salt and the ice temperature. No evidence was found for the existence of either phase or geometric hysteresis in NaCl ice. The strength of ice at sub-eutectic temperatures, however, is decreased appreciably if the ice has been subjected to temperatures above the eutectic point; this is the result of the redistribution of brine during the warm-temperature period. Short-term cooling produces an appreciable (20 per cent) decrease in strength, in fresh-water and NaCl.2H2O ice. The present results are compared with tests on natural sea ice and it is suggested that the strength of freshwater ice is a limit which is approached but not exceeded by cold sea ice and that the reinforcement of brine pockets by Na2SO4.10H2O is either lacking or much less than previously assumed.


2015 ◽  
Vol 6 (2) ◽  
pp. 2137-2179
Author(s):  
X. Shi ◽  
G. Lohmann

Abstract. A newly developed global climate model FESOM-ECHAM6 with an unstructured mesh and high resolution is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. A sensitivity experiment is performed which reduces the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting decrease in the Arctic winter sea-ice concentration strongly reduces the surface albedo, enhances the ocean heat release to the atmosphere, and increases the sea-ice production. Furthermore, our simulations show a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the sea ice transport affects the freshwater budget in regions of deep water formation. A warming over Europe, Asia and North America, associated with a negative anomaly of Sea Level Pressure (SLP) over the Arctic (positive phase of the Arctic Oscillation (AO)), is also simulated by the model. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), especially for the Pacific sector. Additionally, a series of sensitivity tests are performed using an idealized 1-D thermodynamic model to further investigate the influence of the open-water ice growth, which reveals similar results in terms of the change of sea ice and ocean temperature. In reality, the distribution of new ice on open water relies on many uncertain parameters, for example, surface albedo, wind speed and ocean currents. Knowledge of the detailed processes is currently too crude for those processes to be implemented realistically into models. Our sensitivity experiments indicate a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system.


1980 ◽  
Vol 25 (91) ◽  
pp. 175-182
Author(s):  
G. V. B. Cochran

AbstractIncreasing interest is being directed toward studies involving measurement of strain and strain-rates in sea and glacier ice. A number of techniques for obtaining these data over gauge lengths ranging from 1 m to several kilometers have been reported, but there has been little experience with shorter lengths. Use of commercially available electrical resistance strain-gauges (length 5–20 cm) intended for embedment in concrete offers a new approach in which multiple gauge, two- and three-dimensional arrays can be installed in ice with minimum effort and monitored with portable equipment. This report describes a pilot study designed to demonstrate the use of three types of electrical resistance strain gauges in sea ice under exposed field conditions. Results include detection of variations in strain fields related to tidal currents.


1859 ◽  
Vol 9 ◽  
pp. 609-611 ◽  

The contradictory statements of Dr. Sutherland and Dr. Kane, with regard to the saltness of the ice formed from sea-water,—the former maintaining that sea-water ice contains about one-fourth of the salt of the original water; the latter, that if the cold be sufficiently intense, there will be formed from sea-water a fresh and purer element fit for domestic use,—induced the author to take advantage of his position, as naturalist to the expedition now in the northern seas, to reinvestigate the subject. The changes which he has observed sea-water to undergo in freezing are the following. When the temperature falls below + 28°⋅5, it becomes covered with a thin pellicle of ice; after some time this pellicle becomes thicker and presents a vertically striated structure, similar to that of the ordinary cakes of sal-ammoniac. As the ice further increases in thickness, it becomes more compact, but the lowest portion still retains the striated structure. On the surface of the ice, saline crystals, designated by the author “efflorescence,” soon begin to form, at first few in number and widely separated, but gradually forming into tufts and ultimately covering the whole surface. At first, the increase in thickness of the ice is rapid, but afterwards the rate of growth is much slower and more uniform. The ice formed yields, on being melted, a solution differing in specific gravity according to the temperature at the time of congelation, its density being less, the lower the temperature at which the process of congelation took place. Although the author’s observations extended from + 28°⋅5 to —42°, he was never able to obtain fresh-water from sea-ice, the purest specimen being of specific gravity 1⋅005, and affording abundant evidence of the presence of salts, especially of chloride of sodium, in such quantity as to render it unfit for domestic purposes.


1964 ◽  
Vol 5 (37) ◽  
pp. 17-38 ◽  
Author(s):  
David D. Smith

AbstractIce island ARLIS II, which is adrift in the Arctic Ocean, is a 1.3 km. wide and 3.8 km. long fragment of shelf ice 12–25 m. thick, which preserves several structural features heretofore undescribed in ice. The island is composed of an irregular central block of foliated, locally debris-rich, grey glacial ice bordered in part by extensive areas of stratified bluish sea ice. The central block contains a series of narrow, elongate, sub-parallel dike-like septa of massive fresh-water ice and a large tongue-like body of tightly folded, coarse banded ice. Both the septa and the tongue cut across the foliation and debris zones of the grey ice.The margins of the central block are penetrated by a series of elongate, crudely wedge-shaped re-entrants occupied by salients of bluish sea ice. Two broad, arch-like plunging anticlines deform the stratified sea ice along one margin of the block.The foliation and debris zones in the glacial ice are relict features inherited from the source glacier. The septa formed as crevasse and basal fracture fills. Salients represent fills formed in the irregular re-entrants along the margins of the glacial ice mass. The tongue of tightly folded, banded ice represents an earlier generation salient deformed by compressive forces as the fill built up. The broad anticlines are apparently the result of warping in response to differential ablation but the small, tight plunging folds on their noses and limbs are probably the result of compressive forces.


2020 ◽  
Author(s):  
Håkan Svedhem ◽  
Oleg Korablev ◽  
Igor Mitrofanov ◽  
Daniel Rodionov ◽  
Nicholas Thomas ◽  
...  

<p>The Trace Gas Orbiter, TGO, has in March 2020 concluded its first Martian year in its 400km, 74 degrees inclination, science orbit. It has been a highly successful year, starting with the rise, plateau and decay of the major Global Dust Storm in the summer of 2018. This has enabled interesting results to be derived on the water vapour distribution, dynamic behaviour and upward transport as a consequence of the dust storm. The characterisation of the minor species and trace gasses is continuing and a large number of profiles is produced every day. A dedicated search of methane has shown that there is no methane above an altitude of a few km, with an upper limit established at about 20 ppt (2∙10<sup>-11</sup>). The solar occultation technique used by the spectrometers has definitely proven its strength, both for its high sensitivity and for its capability of making high resolution altitude profiles of the atmosphere. Climatological studies have been initiated and will become more important now that a full year has passed, even if the full potential will be visible only after a few Martian years of operation. The FREND instrument has characterised the hydrogen in the shallow sub-surface on a global scale at a spatial resolution much better than previous missions have been able. It has found areas at surprisingly low latitudes with significant amounts of sub-surface hydrogen, most likely in the form of water ice. The CaSSIS camera has made a high number of images over a large variety of targets, including the landing sites of the 2020 ESA and NASA rovers, Oxia Planum and the Jezero Crater. Stereo imaging has enabled topographic information and precise 3-D landscape synthesis.</p><p>This presentation will summarise the highlights of the first Martian year and discuss planned activities for the near and medium term future.</p><p>The ExoMars programme is a joint activity by the European Space Agency (ESA) and ROSCOSMOS, Russia. It consists of the ExoMars 2016 mission, launched 14 March 2016, with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, to be launched in July/August 2020, carrying a Rover and a surface science platform to the surface of Mars. <strong><br></strong></p>


2000 ◽  
Vol 123 (3) ◽  
pp. 576-585 ◽  
Author(s):  
S. C. Wang ◽  
P. S. Wei

Dynamic electrical resistance during resistance spot welding has been quantitatively modeled and analyzed in this work. A determination of dynamic resistance is necessary for predicting the transport processes and monitoring the weld quality during resistance spot welding. In this study, dynamic resistance is obtained by taking the sum of temperature-dependent bulk resistance of the workpieces and contact resistances at the faying surface and electrode-workpiece interface within an effective area corresponding to the electrode tip where welding current primarily flows. A contact resistance is composed of constriction and film resistances, which are functions of hardness, temperature, electrode force, and surface conditions. The temperature is determined from the previous study in predicting unsteady, axisymmetric mass, momentum, heat, species transport, and magnetic field intensity with a mushy-zone phase change in workpieces, and temperature and magnetic fields in the electrodes of different geometries. The predicted nugget thickness and dynamic resistance versus time show quite good agreement with available experimental data. Excluding expulsion, the dynamic resistance curve can be divided into four stages. A rapid decrease of dynamic resistance in stage 1 is attributed to decreases in contact resistances at the faying surface and electrode-workpiece interface. In stage 2, the increase in dynamic resistance results from the primary increase of bulk resistance in the workpieces and an increase of the sum of contact resistances at the faying surface and electrode-workpiece interface. Dynamic resistance in stage 3 decreases, because increasing rate of bulk resistance in the workpieces and contact resistances decrease. In stage 4 the decrease of dynamic resistance is mainly due to the formation of the molten nugget at the faying surface. The molten nugget is found to occur in stage 4 rather than stage 2 or 3 as qualitatively proposed in the literature. The effects of different parameters on the dynamic resistance curve are also presented.


1992 ◽  
Vol 8 ◽  
pp. 123-127
Author(s):  
Takahiro Takeuchi ◽  
Hirofumi Tabuchi ◽  
Akira Imaizumi ◽  
Kunio Enoki ◽  
Satoshi Okamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document