Characterization of Plasticized Polyether-Urethane Solid Polymer Electrolytes

1994 ◽  
Vol 369 ◽  
Author(s):  
M. Forsyth ◽  
P. Meakin ◽  
D. R. Macfarlane ◽  
A. J. Hill

AbstractThe effect of plasticizer addition on the density, conductivity, glass transition, and free volume behavior of salt containing polyether-urethanes has been examined. The addition of up to 1.5 molal LiC1O4 salt results in an effective crosslinking of the polyether-urethane chains due to the Li+ coordination with the oxygens of the host polymer. This crosslinking decreases inter- and intrachain separation and reduces polymer chain mobility as illustrated by increased density and Tg, decreased free volume, and, at salt concentrations greater than 0.6 molal, decreased conductivity. The addition of approximately 30 wt % tetraglyme plasticizer to the 1 molal LiC1O4/host polymer complex is shown to counter the effective crosslinking resulting in a decreased Tg to a value equal to that of the pure host polymer, increased conductivity, and increased average free volume cavity size to a value equal to that of the pure host polymer. However, the relative number of free volume cavities in the plasticized host polymer/salt complex remains fewer than that of the pure host polymer over the concentration range of plasticizer studied, and in a similar manner the density remains greater than that of the pure host polymer. The room temperature conductivity, free volume, and density behavior in conjunction with the Tg results suggest that the plasticizer addition leads to Li+ coordination with the oxygens of the plasticizer chains as well as increased mobility of the host polymer chains.

2010 ◽  
Vol 129-131 ◽  
pp. 526-530 ◽  
Author(s):  
Salmiah Ibrahim ◽  
N.S. Mohamed

ZrO2 nano sized filler of different amounts is introduced into solid polymer electrolytes of PVDF-HFP-LiCF3SO3-ZrO2. It is observed that the conductivity of the electrolytes varies with ZrO2 content and temperature. The highest room temperature conductivity achieved is in the order of 10-3 S cm-1 which is an increase of seven orders of magnitude compared to the conductivity of PVDF-HFP-LiCF3SO3 (without filler). The temperature dependent conductivity follows the Vogel Tamman Fulcher relationship which can be described by the free volume theory. Transference number measurements using DC polarization method show that the nanocomposite polymer electrolytes are ionic conductors. Differential Scanning Calorimetry results show that the degree of crystallinity is slightly affected by the addition of ZrO2 nanofiller.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 262
Author(s):  
Maryam A. M. Saeed ◽  
Omed Gh. Abdullah

Polyvinyl alcohol (PVA) based proton-conducting solid polymer electrolyte was prepared with a high salt concentration of ammonium nitrate (NH4NO3) by the technique of solvent casting. From the X-ray diffraction studies, the semicrystalline nature of PVA with the inclusion of NH4NO3 was studied. XRD analysis indicates that the highest ion conductive sample exhibits the minimum crystalline nature. The decreasing trend of Jonscher-exponent with temperature rise reveals that the present system is insured by the correlated barrier hopping (CBH) model. The maximum room temperature conductivity was found to be 5.17 × 10−5 S/cm for PVA loaded 30 wt.% of NH4NO3. The ionic transport of the proton-conducting solid polymer electrolyte was studied at the temperature range of 303–353 K. The conductivity-temperature relationship of the systems was analyzed using both the Arrhenius and Vogel–Tammann–Fulcher (VTF) models to explain the ionic hopping mechanism for the system.


2014 ◽  
Vol 17 (4) ◽  
pp. 213-217
Author(s):  
M. Imperiyka ◽  
A. Ahmad ◽  
S. A. Hanifah ◽  
M. Y.A. Rahman ◽  
N. S. Mohamed

Effect of lithium triflate (LiTf) concentration on the properties of poly (glycidyl methacrylate-co-methyl methacrylate) P(GMAco-MMA)-based solid polymer electrolyte was investigated. The copolymer of (GMA-co-MMA) was synthesized by photopolymerization method. P(GMA–MMA) was fixed at the ratio of 90:10 based on the conductivity result of the electrolyte film. The electrolyte samples were characterized using impedance spectroscopy (EIS), cyclic voltammetry (CV) and thermogravimetric analysis (TGA). The room temperature conductivity was improved about six orders upon the addition of 30 wt. % LiTf salt into the polymer host. The highest room temperature conductivity was 1.4×10-6 S cm-1 at 30 wt. % LiTf. The highest conductivity of 1.25×10-4 S cm-1 was achieved at 393 K. The polymer electrolyte system exhibits Arrhenius-like behavior with the pre-exponential factor of 1.25×10-4 S cm-1 and activation energy of 0.39 eV. The electrolyte showed electrochemical stability window up to 3 V. The thermal stability increases with the salt concentration. The above results indicate that the electrolyte has potential for lithium ion battery application.


2018 ◽  
Vol 30 (8) ◽  
pp. 949-956 ◽  
Author(s):  
A Sachdeva ◽  
B Bhattacharya ◽  
Vijay Singh ◽  
Abhimanyu Singh ◽  
SK Tomar ◽  
...  

The present investigation deals with the preparation of multi-walled carbon nanotube (MWCNT)-doped plasticized polymer electrolyte. The nanocomposite has been prepared using solution casting method. Complex impedance spectroscopy study revealed the utmost room temperature conductivity of 5.6 × 10−4 S/cm when optimized plasticized polymer electrolyte (poly(ethyl methacrylate)+30% sodium iodide+60% ethylene carbonate) was doped with 7% MWCNT. Temperature dependence of conductivity showed Arrhenius behavior. The surface morphology and crystalline–amorphous deviation of the composite was observed using scanning electron microscope. Perfect complexation of various components of the composite was confirmed from Fourier-transform infrared spectroscopy and X-ray diffraction (XRD) data. The transference number measurement was done to calculate the proportionate amount of ionic and electronic conductivity. A dye sensitized solar cell has been fabricated using maximum ionic conductivity of solid polymer electrolyte and its electrical parameters measured at 1 sun condition.


2021 ◽  
Vol 9 ◽  
Author(s):  
Benxin Jing ◽  
Xiaofeng Wang ◽  
Yi Shi ◽  
Yingxi Zhu ◽  
Haifeng Gao ◽  
...  

Polyethylene oxide (PEO)-based polymers are commonly studied for use as a solid polymer electrolyte for rechargeable Li-ion batteries; however, simultaneously achieving sufficient mechanical integrity and ionic conductivity has been a challenge. To address this problem, a customized polymer architecture is demonstrated wherein PEO bottle-brush arms are hyperbranched into a star architecture and then functionalized with end-grafted, linear PEO chains. The hierarchical architecture is designed to minimize crystallinity and therefore enhance ion transport via hyperbranching, while simultaneously addressing the need for mechanical integrity via the grafting of long, PEO chains (Mn = 10,000). The polymers are doped with lithium bis(trifluoromethane) sulfonimide (LiTFSI), creating hierarchically hyperbranched (HB) solid polymer electrolytes. Compared to electrolytes prepared with linear PEO of equivalent molecular weight, the HB PEO electrolytes increase the room temperature ionic conductivity from ∼2.5 × 10–6 to 2.5 × 10−5 S/cm. The conductivity increases by an additional 50% by increasing the block length of the linear PEO in the bottle brush arms from Mn = 1,000 to 2,000. The mechanical properties are improved by end-grafting linear PEO (Mn = 10,000) onto the terminal groups of the HB PEO bottle-brush. Specifically, the Young’s modulus increases by two orders of magnitude to a level comparable to commercial PEO films, while only reducing the conductivity by 50% below the HB electrolyte without grafted PEO. This study addresses the trade-off between ion conductivity and mechanical properties, and shows that while significant improvements can be made to the mechanical properties with hierarchical grafting of long, linear chains, only modest gains are made in the room temperature conductivity.


2011 ◽  
Vol 391-392 ◽  
pp. 1075-1079
Author(s):  
Gui Jie Liang ◽  
Wei Lin Xu ◽  
Jie Xu ◽  
Xiao Lin Shen ◽  
Mu Yao

A novel kind of efficient solid polymer electrolyte (SPE) based on crosslinked polyester matrix has been prepared by employing low molecular weight PEG (oligo-PEG, Mw = 400 g/mol), followed by crosslinking of the PEG with citric acid (CA). The oligo-PEG, with small coil size, can be easily penetrated into mesopores of TiO2 photoelectrode, while the mechanical stability of the SPE can also be maintained by crosslinking. The factor of weight ratio of CA cross linker in the hybrid plays an important role in determining the intersegmental distance and free volume of the polymer matrix, which sequentially affects the electrochemical activity of the conductive ions and then the ionic conductivity of the polymer electrolyte. By using the 32.4 wt.% CA in the matrix, the SPE with the optimal room temperature conductivity (σ) of 5.43×10-5 S/cm was obtained.


Sign in / Sign up

Export Citation Format

Share Document