Superconducting Properties of Amorphous Multilayer Metal-Semiconductor Composites

1984 ◽  
Vol 37 ◽  
Author(s):  
A. M. Kadin ◽  
R. W. Burkhardt ◽  
J. T. Chen ◽  
J. E. Keem ◽  
S. R. Ovshinsky

AbstractFollowing the earlier multilayer work of Ovshinsky and colleagues, we have fabricated thin-film samples consisting of alternating periodic layers of a transition metal (Nb, Mo, W) and a semiconducting element (Si, Ge, C) by sequential sputtering from two targets onto room-temperature substrates. The regular repeat spacing has been varied from 10 Å to more than 100 Å, with as many as several hundred layer pairs. Crystalline epitaxy was not required or even desired; many samples were largely amorphous as determined from x-ray scattering. Electrical transport measurements of superconducting properties have been carried out parallel to the layers. Samples exhibited highly anisotropic superconducting critical magnetic fields, with some values in excess of 200kG parallel to the layers. Evidence suggesting an asymmetric interface profile will be presented.

Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


2021 ◽  
pp. 149619
Author(s):  
Manni Chen ◽  
Zhipeng Zhang ◽  
Runze Zhan ◽  
Juncong She ◽  
Shaozhi Deng ◽  
...  

2012 ◽  
Vol 45 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Takamichi Shinohara ◽  
Tomoko Shirahase ◽  
Daiki Murakami ◽  
Taiki Hoshino ◽  
Moriya Kikuchi ◽  
...  

2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


1982 ◽  
Vol 20 ◽  
Author(s):  
R. Moret ◽  
R. Comes ◽  
G. Furdin ◽  
H. Fuzellier ◽  
F. Rousseaux

ABSTRACTIn α-C5n-HNO3 the condensation of the room-temperature liquid-like diffuse ring associated with the disorder-order transition around 250 K is studied and the low-temperature. superstructure is examined.It is found that β-C8n-HNO3 exhibits an in-plane incommensurate order at room temperature.Two types of graphite-Br2 are found. Low-temperature phase transitions in C8Br are observed at T1 ≍ 277 K and T2 ≍ 297 K. The room-temperature structure of C14Br is reexamined. Special attention is given to diffuse scattering and incommensurability.


1986 ◽  
Vol 25 (Part 1, No. 9) ◽  
pp. 1317-1322 ◽  
Author(s):  
Nobuo Kashiwagura ◽  
Yasuharu Kashihara ◽  
Jimpei Harada

2005 ◽  
Vol 879 ◽  
Author(s):  
M. Abid ◽  
C. Terrier ◽  
J-P Ansermet ◽  
K. Hjort

AbstractFollowing the theory, ferromagnetism is predicted in Mn- doped ZnO, Indeed, ferromagnetism above room temperature was recently reported in thin films as well as in bulk samples made of this material. Here, we have prepared Mn doped ZnO by electrodeposition. The samples have been characterized by X-ray diffraction and spectroscopic methods to ensure that the dopants are substitutional. Some samples exhibit weak ferromagnetic properties at room temperature, however to be useful for spintronics this material need additional carriers provided by others means.


2019 ◽  
Vol 52 (2) ◽  
pp. 247-251
Author(s):  
Detlef-M. Smilgies

Recently, surface and thin-film studies using area detectors have become prevalent. An important class of such systems are lamellar thin films formed by small molecules, liquid crystals or semicrystalline polymers. Frequently, the lamellae align more or less parallel to the substrate. Such structures can be easily discerned by their characteristic X-ray scattering close to the incident plane. This paper describes how such patterns can be simulated, in order to extract morphological information about the thin film.


1992 ◽  
Vol 263 ◽  
Author(s):  
T. J. Kistenmacher ◽  
S. A. Ecelberger ◽  
W. A. Bryden

ABSTRACTThin films of (AI/In)N alloys have been deposited on AIN-nucleated (00.1) sapphire by reactive (pure N2 gas) magnetron sputtering and characterized by X-ray scattering, stylus profilometry, optical spectroscopy, and electrical transport measurements. Initial efforts have concentrated on producing films with compositions near Al0.31In0.69N (bandgap tailored to GaN). The alloy sputtering targets were disks fabricated by cold pressing appropriate molar mixtures of beads of 99.99% purity Al and In. The resulting thin films are composed of heteroepitaxial grains {(00.1)InNll(00.1)sapphire; (10.0)InNll(11.0)Sapphire} and their chemical composition has been deduced from the variation in the a cell constant (as measured by the X-ray precession method) to yield equilibrium film compositions near Al0.04In0.96N and Al0.25In0.75N, respectively. Preliminary results are presented on the dependence of the quality of heteroepitaxial growth and electrical and optical properties of. these AlxIn1−xN alloy films on various growth parameters: such as chemical composition; film thickness; morphology; and substrate temperature.


Sign in / Sign up

Export Citation Format

Share Document