Magnetic Properties and Structural Transformation in Copper-304 Stainless Steel Multilayer Materials

1995 ◽  
Vol 382 ◽  
Author(s):  
K. Parvin ◽  
S.P. Weathersby ◽  
T.W. Barbee ◽  
T.P. Weihs ◽  
M.A. Wall

ABSTRACTMultilayer foils of Cu-304 stainless steel (304SS) with equal layer thicknesses in the range t=5.0-500 Å and total thicknesses 10-20 μm have been synthesized using magnetron sputtering at ambient substrate temperature. The x-ray diffraction data of as-deposited films show two structural regimes: small thickness (t=5-10 Å) which is characterized by epitaxial FCC growth of 304SS on copper, and large thickness (t=13.5-500 Å) which shows epitaxial FCC 304SS growth near the interface and BCC 304SS growth away from the interface. FCC structured films show very small magnetic moments at room temperature similar to bulk 304SS stable FCC phase. However, a strong magnetic moment is observed for thicker samples due to ferromagnetic metastable 304SS BCC phase. Two opposing transformations occur in the 304 layers as the samples are heated. The first transformation is from the metastable BCC 304SS to the stable FCC phase. This transformation produces a strong drop in magnetic moment and is clearly visible in the large period multilayers which contain high volume fractions of BCC 304SS. The second transformation is from the original FCC phase to a new stable BCC phase in the 304SS near the copper-304SS interfaces.The transformation is produced by diffusion of nickel from the 304SS into the surroundingcopper and the chemical destabilization of the FCC phase which starts near 400 ºC.This transformation produces a sharp increase in magnetic moment. The magnetic signal drops to zero near 675 ºC which is the Curie temperature of ferromagnetic BCC Fe.75 Cr25..

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 984
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

An X-ray diffraction investigation was carried out on nitrogen-containing 304 stainless steel thin films deposited by reactive rf magnetron sputtering over a range of substrate temperature and bias levels. The resulting films contained between ~28 and 32 at.% nitrogen. X-ray analysis was carried out using both the standard Bragg-Brentano method as well as area-detector diffractometry analysis. The extent of the diffraction anomaly ((002) peak shift) was determined using a calculated parameter, denoted RB, which is based on the (111) and (002) peak positions. The normal value for RB for FCC-based structures is 0.75 but increases as the (002) peak is anomalously displaced closer to the (111) peak. In this study, the RB values for the deposited films were found to increase with substrate bias but decrease with substrate temperature (but still always >0.75). Using area detector diffractometry, we were able to measure d111/d002 values for similarly oriented grains within the films, and using these values calculate c/a ratios based on a tetragonal-structure model. These results allowed prediction of the (002)/(200) peak split for tetragonal structures. Despite predicting a reasonably accessible split (~0.6°–2.9°–2θ), no peak splitting observed, negating the tetragonal-structure hypothesis. Based on the effects of film bias/temperature on RB values, a defect-based hypothesis is more viable as an explanation for the diffraction anomaly.


1985 ◽  
Vol 58 ◽  
Author(s):  
R. N. Wright ◽  
J. E. Flinn ◽  
G. E. Korth

ABSTRACTThe microstructures of rapidly solidified Type 304 stainless steel powders produced by vacuum gas (VGA) and centrifugal atomization (CA) have been examined. The solidification morphology and phase distribution have been characterized using optical and scanning electron microscopy, and the relative amounts of ferrite and austenite have been quantified using x-ray diffraction. Most CA powder particles contain both fcc and bcc phases, with the bcc phase predominating at small particle sizes and the fcc phase at large particle sizes. The VGA powder generally contains less ferrite, with very little dependence on the particle size. The ferrite was metastable and transforms to austenite on annealing at 900°C.


2021 ◽  
Author(s):  
Lizhe ZHAO ◽  
Wenbiao GONG ◽  
Rui ZHU ◽  
Mingyue GONG ◽  
Heng CUI

Continuous drive friction welding was used to realize the high quality connection between pure aluminum and 304 stainless steel. The composition of interface micro-zone and mechanical properties of joint were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), tensile test and hardness test. The formation mechanism of intermetallic compound (IMC) during friction welding was discussed. The results show that under the experimental parameters, the joint surface is uneven and two intermetallic compounds, Fe2Al5 and FeAl3, are formed. With the increase of friction pressure, the mechanical bonding degree of the joint decreases, the metallurgical bonding degree increases, the element diffusion distance increases from 1.4 to 1.9 um, the tensile strength of the joint can reach or even higher than that of the base metal on the aluminum side, and the maximum hardness increased from 414 HV to 447 HV.


2009 ◽  
Vol 79-82 ◽  
pp. 651-654 ◽  
Author(s):  
Min Jie Zhou ◽  
Li Zhong

Nano-sized TiO2/V2O5 bilayer coatings were prepared on type304 stainless steel substrate by sol-gel method and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD). The performance of photocathode protection of the coating was investigated by the electrochemical method. SEM results indicate that the coating surface is continuous, uniform and dense, XRD spectra show that the coating is of anatase TiO2 and V2O5. The experimental results demonstrate that type 304 stainless steel with the bilayer coating can maintain cathode protection for 6h in the dark after irradiation by UV illumination for 1 h.


2014 ◽  
Vol 12 (11) ◽  
pp. 1206-1211 ◽  
Author(s):  
Ieva Barauskienė ◽  
Eugenijus Valatka

AbstractCobalt (hydro)oxide films on AISI 304 stainless steel and sintered metal fibre filter Bekipor ST 20AL3 were prepared using electrochemical deposition from neutral cobalt acetate solutions under galvanostatic conditions. Deposited films were structurally characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. All electrochemical measurements were performed in aqueous NaOH solution. Capacitive behavior of different films was evaluated using cyclic voltammetry data. The highest specific capacitance (965 F g−1) was reached when Bekipor ST 20AL3 mesh was used as a support for electroactive substance.


2004 ◽  
Vol 50 (12) ◽  
pp. 1445-1449 ◽  
Author(s):  
Amar K. De ◽  
David C. Murdock ◽  
Martin C. Mataya ◽  
John G. Speer ◽  
David K. Matlock

2008 ◽  
Vol 320 (20) ◽  
pp. e571-e574 ◽  
Author(s):  
D.G. Park ◽  
D.W. Kim ◽  
C.S. Angani ◽  
V.P. Timofeev ◽  
Y.M. Cheong

2017 ◽  
Vol 373 ◽  
pp. 146-149
Author(s):  
Wen Deng ◽  
Li Xia Li ◽  
Shou Lei Xu ◽  
Wen Chun Zhang ◽  
Yu Yang Huang ◽  
...  

The microdefects, the thermal expansion coefficients and the magnetization -temperature curves of the Fe64Ni36-xCox (x=1~10) were characterized by means of positron lifetime, X-ray diffraction, Michelson's interferometer and VSM modular on PPMS, respectively. The Fe64Ni30Co6 alloy is a mixture of BCC and FCC structures. With the Co content increasing in Fe64Ni36-xCox alloys, the BCC phase increases, while the FCC phase decreases. In comparison with other Fe64Ni36-xCox alloys, the Fe64Ni31Co5 alloy has a rather high magnetization at temperature lower than Tc, a relatively large change of the magnetization with the temperature near Tc, and a rather low thermal expansion coefficient.


2010 ◽  
Vol 163 ◽  
pp. 247-252 ◽  
Author(s):  
Barbara Kucharska

The paper discusses the examination of the thermal expansibility of a coating composed of the austenitic steel 310S using the X-ray diffraction technique. Temperature measurements were made in the temperature interval of Tamb200°C, in which the transition of the metastable bcc phase forming the as-applied coating into an fcc-type phase occurred in the coating. The values of the coefficients of thermal expansion of both phases were determined by using the weighted average of the intensities of diffraction reflections recorded. The values of the coefficients of thermal expansion of both phases within the entire examination range (Tamb200°C), determined as the weighed averages with the weight allowing for the intensities of individual reflections, were found to be, respectively, 0.910-5 K-1 for the bcc phase and 1.510-5 K-1 for the fcc phase, and by approx. 0.110-5 K-1 lower than the values typical of the phases of austenite and ferrite in conventional steels.


1996 ◽  
Vol 436 ◽  
Author(s):  
B. M. Clemens ◽  
T. C. Hufnagel ◽  
M. C. Kautzky ◽  
J.-F. Bobo

AbstractWe have used grazing incidence x-ray diffraction to observe the structural evolution during growth of sputter-deposited epitaxial Fe films on Cu(001) and Pt(001). We find that on Cu(001), Fe is fcc up to a thickness of 10–12 monolayers, whereupon bcc Fe is observed in first the Pitsch and then the Bain orientations. The fcc Fe shows some relaxation of the misfit from the Cu, as do the Pitsch orientation bcc, which is in tension, and the Bain orientation bcc, which is in compression. All three Fe variants exist in a 40 monolayer thick film. On Pt(001) the Fe grows as bcc with the Bain orientation. However, a thin (20 å) bcc Fe film is transformed to fcc Fe with cube-on-cube orientation by subsequent deposition of Pt. This behavior is consistent with intermixing of Pt into the Fe layer, which lowers the mismatch and bulk chemical energies of the fcc phase relative to that of the bcc phase.


Sign in / Sign up

Export Citation Format

Share Document