scholarly journals Effect of Friction Pressure on Microstructure and Properties of Friction Welded Joints of Pure Aluminum/304 Stainless Steel

2021 ◽  
Author(s):  
Lizhe ZHAO ◽  
Wenbiao GONG ◽  
Rui ZHU ◽  
Mingyue GONG ◽  
Heng CUI

Continuous drive friction welding was used to realize the high quality connection between pure aluminum and 304 stainless steel. The composition of interface micro-zone and mechanical properties of joint were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), tensile test and hardness test. The formation mechanism of intermetallic compound (IMC) during friction welding was discussed. The results show that under the experimental parameters, the joint surface is uneven and two intermetallic compounds, Fe2Al5 and FeAl3, are formed. With the increase of friction pressure, the mechanical bonding degree of the joint decreases, the metallurgical bonding degree increases, the element diffusion distance increases from 1.4 to 1.9 um, the tensile strength of the joint can reach or even higher than that of the base metal on the aluminum side, and the maximum hardness increased from 414 HV to 447 HV.

2022 ◽  
Vol 8 ◽  
Author(s):  
Feng Qin ◽  
Chunbo Zhang ◽  
Jun Zhou ◽  
Kai Xu ◽  
Qi Wang ◽  
...  

In recent years, studying the weldability of a dissimilar metal hybrid structure, with the potential to make full use of their unique benefits, has been a research hotspot. In this article, inertia friction welding was utilized to join Φ130 forged ring of 2219 aluminum alloy with 304 stainless steel. Optical observation (OM), electron back scattering diffraction (EBSD), and scanning electron microscopy (SEM) were utilized to examine the joint microstructure in depth. Depending on the research, a significant thermal–mechanical coupling effect occurs during welding, resulting in inadequate recrystallization on aluminum-side thermo-mechanically affected zone (TMAZ) and forming zonal features. The crystal orientation and grain size of each TMAZ region reflect distinct differences. On the joint faying surface, the growth of intermetallic compounds (IMCs) is inhibited by a fast cooling rate and metallurgical bonding characteristics were found depending on the discontinuous distribution of IMCs. The average joint tensile strength can reach 161.3 MPa achieving 92.2% of 2219-O; fracture occurs on aluminum-side base metal presenting ductile fracture characteristics.


2000 ◽  
Vol 42 (8) ◽  
pp. 807-812 ◽  
Author(s):  
S Fukumoto ◽  
H Tsubakino ◽  
K Okita ◽  
M Aritoshi ◽  
T Tomita

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
A. Abouel-Kasem ◽  
A. Ezz El-Deen ◽  
K. M. Emara ◽  
S. M. Ahmed

Cavitation erosion pits and their effects on erosion progression were investigated in detail for SUS 304 stainless steel, α+β brass (60/40), and pure aluminum (Al-99.999 and Al-99.92) by means of vibratory erosion. Two kinds of erosion pits were found on the specimen surfaces, one by microjet impact and the other by shockwave blow. Systematic observations of the feature of microjet-pits with the testing time showed that the sizes and shapes of microjet-pits did not change at all and such pits scarcely played an important role in developing the erosion. Moreover, the feature morphology of eroded surfaces, and dislodged particles and their large sizes revealed that microjet-pits had a limited effect on erosion and that the predominant failure was a fatigue process.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 984
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

An X-ray diffraction investigation was carried out on nitrogen-containing 304 stainless steel thin films deposited by reactive rf magnetron sputtering over a range of substrate temperature and bias levels. The resulting films contained between ~28 and 32 at.% nitrogen. X-ray analysis was carried out using both the standard Bragg-Brentano method as well as area-detector diffractometry analysis. The extent of the diffraction anomaly ((002) peak shift) was determined using a calculated parameter, denoted RB, which is based on the (111) and (002) peak positions. The normal value for RB for FCC-based structures is 0.75 but increases as the (002) peak is anomalously displaced closer to the (111) peak. In this study, the RB values for the deposited films were found to increase with substrate bias but decrease with substrate temperature (but still always >0.75). Using area detector diffractometry, we were able to measure d111/d002 values for similarly oriented grains within the films, and using these values calculate c/a ratios based on a tetragonal-structure model. These results allowed prediction of the (002)/(200) peak split for tetragonal structures. Despite predicting a reasonably accessible split (~0.6°–2.9°–2θ), no peak splitting observed, negating the tetragonal-structure hypothesis. Based on the effects of film bias/temperature on RB values, a defect-based hypothesis is more viable as an explanation for the diffraction anomaly.


1995 ◽  
Vol 382 ◽  
Author(s):  
K. Parvin ◽  
S.P. Weathersby ◽  
T.W. Barbee ◽  
T.P. Weihs ◽  
M.A. Wall

ABSTRACTMultilayer foils of Cu-304 stainless steel (304SS) with equal layer thicknesses in the range t=5.0-500 Å and total thicknesses 10-20 μm have been synthesized using magnetron sputtering at ambient substrate temperature. The x-ray diffraction data of as-deposited films show two structural regimes: small thickness (t=5-10 Å) which is characterized by epitaxial FCC growth of 304SS on copper, and large thickness (t=13.5-500 Å) which shows epitaxial FCC 304SS growth near the interface and BCC 304SS growth away from the interface. FCC structured films show very small magnetic moments at room temperature similar to bulk 304SS stable FCC phase. However, a strong magnetic moment is observed for thicker samples due to ferromagnetic metastable 304SS BCC phase. Two opposing transformations occur in the 304 layers as the samples are heated. The first transformation is from the metastable BCC 304SS to the stable FCC phase. This transformation produces a strong drop in magnetic moment and is clearly visible in the large period multilayers which contain high volume fractions of BCC 304SS. The second transformation is from the original FCC phase to a new stable BCC phase in the 304SS near the copper-304SS interfaces.The transformation is produced by diffusion of nickel from the 304SS into the surroundingcopper and the chemical destabilization of the FCC phase which starts near 400 ºC.This transformation produces a sharp increase in magnetic moment. The magnetic signal drops to zero near 675 ºC which is the Curie temperature of ferromagnetic BCC Fe.75 Cr25..


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yanni Wei ◽  
Fu Sun

The dissimilar pure metals Al/Fe and Cu/Fe with different metallurgical compatibility were joined by continuous drive friction welding. The friction weldability was investigated. The microstructure of the joining interface was analyzed by scanning electron microscopy, and the chemical compositions were tested by energy-dispersive spectroscopy. The joining strength was evaluated by tensile test, and the fracture was detected by X-ray diffraction analysis. The results show that sound joints of Al/Fe and Cu/Fe can be obtained by continuous drive friction welding process. A discontinuous reaction layer was formed on Al/Fe interface, and no obvious reaction layer appeared on Cu/Fe interface. The tensile strength of the joints increased with increasing friction pressure, and the highest strength could reach up to 70 MPa for Al/Fe joint and 222 MPa for Cu/Fe joint. All the Al/Fe friction-welded samples failed at the friction interface, while the Cu/Fe joint under 36 and 44 MPa friction pressure failed at Cu matrix during the tensile test.


2021 ◽  
Vol 63 (12) ◽  
pp. 1097-1103
Author(s):  
M. Bakkiyaraj ◽  
A. K. Lakshminarayanan ◽  
S. Yuvaraj ◽  
P. K. Nagarajan

Abstract Dissimilar (AA6061 & AA7075-T6) friction welded aluminum joints were taken into the investigation to correlate the influences of friction time on tensile and metallurgical properties. The dissimilar metals were welded by varying the friction time from 2 s to 6 s with the following constant parameters: a rotating speed of 1200 rpm, friction pressure of 35 MPa, upset pressure of 35 MPa, and upset time of 3 s. The higher friction time during joint fabrication needs to be selected to attain good metallurgical bonding between rubbing surfaces. The highest tensile strength of 228 MPa was attained when the friction time was given as 4 s. Furthermore, the increase in friction time widened the width and reduced the hardness of the heat affected zone on the AA6061 side where joint failure occurred. Finally, the metallurgical features of the dissimilar specimens were characterized using optical microscopy, scanning electron microscopy, and X-ray diffraction. Other details related to the characterization and results of the testing were recounted.


Sign in / Sign up

Export Citation Format

Share Document