The Early Stages of Solid-State Reactions in Ti/Al Multilayer Films

1995 ◽  
Vol 398 ◽  
Author(s):  
C. Michaelsen ◽  
S. WÖHlert ◽  
R. Bormann ◽  
K. Barmak

ABSTRACTWe have investigated the solid-state reaction of Ti/Al multilayer films by x-ray diffraction (XRD) and differential scanning calorimetry (DSC), with focus on the early stages of the reaction provided by samples with pair thicknesses in the range 5 - 40 nm. This reaction, which results in formation of TiAl3 with metastable Ll2 structure, can be modeled by a nucleation and growth process on the basis of the Johnson-Mehl-Avrami theory, with a reaction-order parameter n ≈1. These observations indicate the significance of nucleation barriers even at early stages of solid-state reactions, and suggests that the phenomena of phase selection and formation of metastable phases can result from the presence of nucleation barriers.

1989 ◽  
Vol 170 ◽  
Author(s):  
B. E. White ◽  
M. E. Patt ◽  
E. J. Cotts

AbstractDifferential scanning calorimetry and x-ray diffraction analysis were utilized to monitor solid state reactions in mechanically deformed Ni/Ti multilayered composites. Solid state reactions at temperatures less than = 650 K result in the formation of a highly disordered phase which is apparently amorphous.The subsequent nucleation and growth at higher temperatures of intermetallic compounds from the amorphous phase is examined. The relatively small thickness of amorphous material (less than 100 Å) which can be grown by solid state reaction in our Ni/Ti samples, combined with the indication that a disordered interface such as that produced by mechanical deformation facilitates these reactions in the Ni-Ti system, may provide some explanation for the relatively high degree of success experienced in the production of amorphous Ni- Ti by means of ball milling. Comparisons are made to results obtained in the Ni-Zr system.


1991 ◽  
Vol 6 (3) ◽  
pp. 499-504 ◽  
Author(s):  
S. Martelli ◽  
G. Mazzone ◽  
M. Vittori-Antisari

Solid state reactions between Ni and Sn at two compositions, Ni75Sn25 and Ni60Sn40, have been induced by means of near room temperature cold rolling and mechanical alloying. The reaction steps have been monitored by x-ray diffraction and differential scanning calorimetry. At both compositions, the first effect of plastic deformation is the formation of two metastable phases which, by further milling or low temperature thermal treatment, transform into the Ni3Sn4 compound. The chemical composition of the metastable phases has been determined to be close to that of Ni3Sn4 and the crystal structure of one of them appears to be related to that of β–Sn. Differential scanning calorimetry and thermal treatment of samples containing the metastable phases have shown that these phases transform into Ni3Sn4 at about 150 °C and that no other reaction takes place up to this temperature. Upon prolonged milling, a different behavior has been observed for the two compositions. While the Ni60Sn40 mixture eventually forms the Ni3Sn2 compound in agreement with previous results, the final product of mechanically alloying the Ni75Sn25 mixture is a phase whose structure, rather than amorphous as previously hypothesized, in our case can be described as based on that of the disordered high temperature form of the Ni3Sn compound. Differential scanning calorimetry and x-ray diffraction analysis of this sample have shown the formation, at 380 °C, of ordered Ni3Sn with an associated heat release of about 10 kJ/mole.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2010 ◽  
Vol 24 (09) ◽  
pp. 1137-1140 ◽  
Author(s):  
M. M. VERDIAN ◽  
M. SALEHI ◽  
K. RAEISSI

Amorphous/nanocrystalline 50 Ni –50 Ti powders were synthesized from elemental Ti and Ni powders by solid state synthesis utilizing low energy mechanical alloying with times up to 100 h. The produced powders were investigated by X-ray diffraction and differential scanning calorimetry to study phase transformations that occurred during heating in the calorimeter. It was found that at the first stage of the heating process, a disordered NiTi phase was formed at temperature of about 400°C. Further investigations indicated that this phase transformed into the Ni 3 Ti and Ti 2 Ni intermetallic compounds after heating at a temperature of about 800°C.


1996 ◽  
Vol 457 ◽  
Author(s):  
J. Zhu ◽  
T. Pradell ◽  
N. Clavaguera ◽  
M. T. Clavaguera-Mora

ABSTRACTDifferential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Neutron Diffraction (ND) and Mössbauer Spectroscopy (MS) were used to study the nanocrystallization process of Fe73.5Cu1Nb3Si22.5–xBx (x=5, 7, 8, 9 and 12) amorphous alloys. Both the temperature range and the activation energy of Fe(Si) phase precipitation from the amorphous martrix increase with the initial B composition. The initial Si composition influences the mechanism of the nanocrystallization: for the Si rich samples, the beginning of nucleation and growth processes is interface controlled, for the B rich samples it is diffusion controlled. Secondary crystallization from the remaining amorphous is mainly Fe3B and Fe2B, the ratio of Fe3B/Fe2B being dependent on the initial composition too.


2019 ◽  
Vol 75 (6) ◽  
pp. 793-805
Author(s):  
Dorota Pogoda ◽  
Jan Janczak ◽  
Sylwia Pawlak ◽  
Michael Zaworotko ◽  
Veneta Videnova-Adrabinska

Kynurenic acid (KYN; systematic name: 4-hydroxyquinoline-2-carboxylic acid, C10H7NO3) displays a therapeutic effect in the treatment of some neurological diseases and is used as a broad-spectrum neuroprotective agent. However, it is understudied with respect to its solid-state chemistry and only one crystal form (α-KYN·H2O) has been reported up to now. Therefore, an attempt to synthesize alternative solid-state forms of KYN was undertaken and six new species were obtained: five solvates and one salt. One of them is a new polymorph, β-KYN·H2O, of the already known KYN monohydrate. All crystal species were further studied by single-crystal and powder X-ray diffraction, thermal and spectroscopic methods. In addition to the above methods, differential scanning calorimetry (DSC), in-situ variable-temperature powder X-ray diffraction and Raman microscopy were applied to characterize the phase behaviour of the new forms. All the compounds display a zwitterionic form of KYN and two different enol–keto tautomers are observed depending on the crystallization solvent used.


1994 ◽  
Vol 9 (3) ◽  
pp. 648-657 ◽  
Author(s):  
J.S. Chen ◽  
E. Kolawa ◽  
M-A. Nicolet ◽  
R.P. Ruiz ◽  
L. Baud ◽  
...  

Thermally induced solid-state reactions between a 70 nm Pt film and a single-crystal (001) β-SiC substrate at temperatures from 300 °C to 1000 °C for various time durations are investigated by 2 MeV He backscattering spectrometry, x-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and cross-sectional transmission electron microscopy. Backscattering spectrometry shows that Pt reacts with SiC at 500 °C. The product phase identified by x-ray diffraction is Pt3Si. At 600–900 °C, the main reaction product is Pt2Si, but the depth distribution of the Pt atoms changes with annealing temperature. When the sample is annealed at 1000 °C, the surface morphology deteriorates with the formation of some dendrite-like hillocks; both Pt2Si and PtSi are detected by x-ray diffraction. Samples annealed at 500–900 °C have a double-layer structure with a silicide surface layer and a carbon-silicide mixed layer below in contact with the substrate. The SiC—Pt interaction is resolved at an atomic scale with high-resolution electron microscopy. It is found that the grains of the sputtered Pt film first align themselves preferentially along an orientation of {111}Pt//{001}SiC without reaction between Pt and SiC. A thin amorphous interlayer then forms at 400 °C. At 450 °C, a new crystalline phase nucleates discretely at the Pt-interlayer interface and projects into or across the amorphous interlayer toward the SiC, while the undisturbed amorphous interlayer between the newly formed crystallites maintains its thickness. These nuclei grow extensively down into the substrate region at 500 °C, and the rest of the Pt film is converted to Pt3Si. Comparison between the thermal reaction of SiC-Pt and that of Si–Pt is discussed.


1983 ◽  
Vol 93 (2) ◽  
pp. 433-440 ◽  
Author(s):  
M. Kizilyalli ◽  
D.S. Jones ◽  
N. Evi̇n ◽  
H. Göktürk

Sign in / Sign up

Export Citation Format

Share Document