Tautomeric polymorphism of the neuroactive inhibitor kynurenic acid

2019 ◽  
Vol 75 (6) ◽  
pp. 793-805
Author(s):  
Dorota Pogoda ◽  
Jan Janczak ◽  
Sylwia Pawlak ◽  
Michael Zaworotko ◽  
Veneta Videnova-Adrabinska

Kynurenic acid (KYN; systematic name: 4-hydroxyquinoline-2-carboxylic acid, C10H7NO3) displays a therapeutic effect in the treatment of some neurological diseases and is used as a broad-spectrum neuroprotective agent. However, it is understudied with respect to its solid-state chemistry and only one crystal form (α-KYN·H2O) has been reported up to now. Therefore, an attempt to synthesize alternative solid-state forms of KYN was undertaken and six new species were obtained: five solvates and one salt. One of them is a new polymorph, β-KYN·H2O, of the already known KYN monohydrate. All crystal species were further studied by single-crystal and powder X-ray diffraction, thermal and spectroscopic methods. In addition to the above methods, differential scanning calorimetry (DSC), in-situ variable-temperature powder X-ray diffraction and Raman microscopy were applied to characterize the phase behaviour of the new forms. All the compounds display a zwitterionic form of KYN and two different enol–keto tautomers are observed depending on the crystallization solvent used.

RSC Advances ◽  
2015 ◽  
Vol 5 (118) ◽  
pp. 97720-97723 ◽  
Author(s):  
Guijun Yang ◽  
Jianwen Yang ◽  
Lingzhi Zhang

The formation mechanism of LiTi2O4 is investigated by in situ variable temperature X-ray diffraction and thermal gravimetric analysis/differential scanning calorimetry system.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


2011 ◽  
Vol 21 (15) ◽  
pp. 5604 ◽  
Author(s):  
Zonghai Chen ◽  
Yang Ren ◽  
Yan Qin ◽  
Huiming Wu ◽  
Shengqian Ma ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4404
Author(s):  
Shengyang Guan ◽  
David C. Mayer ◽  
Christian Jandl ◽  
Sebastian J. Weishäupl ◽  
Angela Casini ◽  
...  

A new solvatomorph of [Au3(1-Methylimidazolate)3] (Au3(MeIm)3)—the simplest congener of imidazolate-based Au(I) cyclic trinuclear complexes (CTCs)—has been identified and structurally characterized. Single-crystal X-ray diffraction revealed a dichloromethane solvate exhibiting remarkably short intermolecular Au⋯Au distances (3.2190(7) Å). This goes along with a dimer formation in the solid state, which is not observed in a previously reported solvent-free crystal structure. Hirshfeld analysis, in combination with density functional theory (DFT) calculations, indicates that the dimerization is generally driven by attractive aurophilic interactions, which are commonly associated with the luminescence properties of CTCs. Since Au3(MeIm)3 has previously been reported to be emissive in the solid-state, we conducted a thorough photophysical study combined with phase analysis by means of powder X-ray diffraction (PXRD), to correctly attribute the photophysically active phase of the bulk material. Interestingly, all investigated powder samples accessed via different preparation methods can be assigned to the pristine solvent-free crystal structure, showing no aurophilic interactions. Finally, the observed strong thermochromism of the solid-state material was investigated by means of variable-temperature PXRD, ruling out a significant phase transition being responsible for the drastic change of the emission properties (hypsochromic shift from 710 nm to 510 nm) when lowering the temperature down to 77 K.


Clay Minerals ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Yun Huang ◽  
Xiaoyan Ma ◽  
Guozheng Liang ◽  
Hongxia Yan

AbstractMelt blending using a twin-screw extruder was used to prepare composites of polypropylene (PP)/organic rectorite (PR). The organic rectorite (OREC) was modified with dodecyl benzyl dimethyl ammonium bromide (1227). Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy were used to investigate the dispersion of OREC in the composites. The d spacings of OREC in PR composites was greater than in OREC itself. The dispersion of OREC particles in the PP polymer matrix was fine and uniform when the clay content was small (2 wt.%). The rheology was characterized using a capillary rheometer. The processing behaviour of the PR system improved as the amount of OREC added increased. Non-isothermal crystallization kinetics were analysed using differential scanning calorimetry. It was shown that the addition of OREC had a heterogeneous nucleation effect on PP, and can accelerate the crystallization. However, only when fine dispersion was achieved, and at lower rates of temperature decrease, was the crystallinity greater. Wide-angle X-ray diffraction and polarized light microscopy were used to observe the crystalline form and crystallite size. The PP in the PR composites exhibited an a-monoclinic crystal form, as in pure PP, and in both cases a spherulite structure was observed. However, the smaller spherulite size in the PR systems indicated that addition of OREC can reduce the crystal size significantly, which might improve the ‘toughness’ of the PP. The mechanical properties (tensile and impact strength) improved when the amount of OREC added was appropriate. Dynamic mechanical analysis showed that the storage modulus (E′) and loss modulus (E″) of the nanocomposites were somewhat greater than those of pure PP when an appropriate amount of OREC was added. Finally, thermogravimetric analysis showed that the PR systems exhibited a greater thermal stability than was seen with pure PP.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Wei Meng ◽  
Lin Du ◽  
Lin Sun ◽  
Lian Zhou ◽  
Xiaopeng Xuan ◽  
...  

One organic functional group was introduced to distinguish the four phenyl ring of tetraphenylethylene, and the In situ temperature-dependent crystal structures were determined to exhibit the conformation changes of tert-butyl...


Author(s):  
Tamara J. Bednarchuk ◽  
Wolfgang Hornfeck ◽  
Vasyl Kinzhybalo ◽  
Zhengyang Zhou ◽  
Michal Dušek ◽  
...  

The organic–inorganic hybrid compound 4-aminopyridinium tetraaquabis(sulfato)iron(III), (C5H7N2)[FeIII(H2O)4(SO4)2] (4apFeS), was obtained by slow evaporation of the solvent at room temperature and characterized by single-crystal X-ray diffraction in the temperature range from 290 to 80 K. Differential scanning calorimetry revealed that the title compound undergoes a sequence of three reversible phase transitions, which has been verified by variable-temperature X-ray diffraction analysis during cooling–heating cycles over the temperature ranges 290–100–290 K. In the room-temperature phase (I), space group C2/c, oxygen atoms from the closest Fe-atom environment (octahedral) were disordered over two equivalent positions around a twofold axis. Two intermediate phases (II), (III) were solved and refined as incommensurately modulated structures, employing the superspace formalism applied to single-crystal X-ray diffraction data. Both structures can be described in the (3+1)-dimensional monoclinic X2/c(α,0,γ)0s superspace group (where X is ½, ½, 0, ½) with modulation wavevectors q = (0.2943, 0, 0.5640) and q = (0.3366, 0, 0.5544) for phases (II) and (III), respectively. The completely ordered low-temperature phase (IV) was refined with the twinning model in the triclinic P{\overline 1} space group, revealing the existence of two domains. The dynamics of the disordered anionic substructure in the 4apFeS crystal seems to play an essential role in the phase transition mechanisms. The discrete organic moieties were found to be fully ordered even at room temperature.


Sign in / Sign up

Export Citation Format

Share Document