Probe of Field Collapse in a-Si:H Solar Cells

1996 ◽  
Vol 420 ◽  
Author(s):  
Qi Wang ◽  
Richard S. Crandall

AbstractWe study the effect of illumination intensity on solar cell performance in a-Si:H solar cells. We find that the fill factor strongly depends on light intensity. As we increase the illumination intensity from low levels to one sun we observe a decrease in fill factor of approximately 15% in as grown cells. We attribute this effect to electric field collapse inside the cell. We propose that photogenerated space charge (free and trapped charge) increases with light intensity and causes field collapse. We describe the origin of space charge and the associated capacitance - photocapacitance. We measure the photocapacitance as a barometer to probe the collapsed field. We obtain a good agreement between photocapacitance experiments and theory. We also explore the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

2019 ◽  
Vol 2 (2) ◽  
pp. 53
Author(s):  
Hamzah Hamzah ◽  
Moh. Toifur ◽  
Ishafit Ishafit

Abstrak- The study about fill factor and efficiency solar cell have been done with an automatic drive machine that rotates the surface of the solar cell following the movement of the light source from 0° up to 90° compared without automatic drive.  The test results are then implemented to determine the fill factor and efficiency in variations in light intensity. In this study, polycrystalline solar cell type (99 × 69) mm2, the Philips 100W/220V light bulb at a distance of 18 cm and the driving machine is controlled through an Arduino Uno R3 microcontroller. Data acquisition of current and voltage is carried out with the help of DCP-BTA current and VP-BTA voltage probes that are connected to the mini labquest transducer and displayed to a computer through loggerpro software. The result show that it has been successfully designed an automatic driver of a solar panel (99 × 69) mm2  with an Arduino Uno R3 microcontroller and a logger pro software as data acquisition software. The using solar cell automatically driven can improve the accuracy and precision of current and voltage readings so the fill factor might be increased up to 10% while the efficiency of solar cells does not change. Variations in light intensity can increase the fill factor and efficiency of solar cells. Fill factor and efficiency have an exponentially relationship to light intensity.


2019 ◽  
Vol 7 (19) ◽  
pp. 5646-5651 ◽  
Author(s):  
Bingbing Chen ◽  
Hongwei Hu ◽  
Teddy Salim ◽  
Yeng Ming Lam

This work discusses how the behaviour of the fill factor (FF) of devices calculated from current–voltage (I–V) measurements at different light intensities can be used as a basis to assess the trap density of methylammonium lead triiodide (MAPbI3) solar cells.


2007 ◽  
Vol 989 ◽  
Author(s):  
Florian Einsele ◽  
Phillip Johannes Rostan ◽  
Uwe Rau

AbstractWe study resistive losses at (p)c-Si/(p)Si:H/(n)ZnO heterojunction back contacts for high efficiency silicon solar cells. We find that a low tunnelling resistance for the (p)a-Si:H/(n)ZnO part of the junction requires deposition of Si:H with a high hydrogen dilution RH > 40 resulting in a highly doped μc-Si:H layer. Such a μc-Si:H layer if deposited directly on a Si wafer yields a surface recombination velocity of S  180 cm/s. Using the same layer as part of a (p)c-Si/(p)Si:H/(n)ZnO back contact in a solar cell results in an open circuit voltage Voc = 640 mV and a fill factor FF = 80 %. Insertion of an (i)a-Si-layer between the μc-Si:H and the wafer leads to a further decrease of S and, for the solar cells to an increase of VOC. However, if the thickness of this intrinsic layer exceeds a threshold of 3 nm, resistive losses lead to a degradation of the fill factor of the solar cells. These resistive losses result from a valence band offset δEV between a-Si:H and c-Si of about 600 meV. The fill factor losses overcompensate the VOC gain such that there is no benefit of the (i)a-Si:H interlayer for the overall solar cell performance when using an (i)a-Si:H/(p)uc-Si:H double layer.


2014 ◽  
Vol 924 ◽  
pp. 193-199 ◽  
Author(s):  
Huang Zhong Yu

The degradation of the performance of the polymer solar cell based on the blend structures system of poly (3-hexylthiophene) (P3HT) and [6,-phenyl C61-butyric acid methyl ester (PCBM) is investigated. This study uses UV-vis absorption spectra, photoluminescence (PL) spectra, charge-transport dark J-V curve chart to explicate the reason for the degradation of the performance of P3HT:PCBM photovoltaic cells. Solar cell performance is degraded primarily through loss in short-circuit current density (Jsc) and fill factor (FF), the reduction in the Jsc and FF of the device is most likely to be due to the formation of the charge transfer complex, deep traps and destruction of the-conjugated system in the degraded P3HT:PCBM device. The exposure to oxygen and photo-oxidation lead to the emergence of these factors of the device performance degradation. Keywords: Degradation; Performance; Solar cells; P3HT: PCBM


2012 ◽  
Vol 455-456 ◽  
pp. 419-423
Author(s):  
Yuan Zhao ◽  
Ming Yu Sheng

The photoelectrical responsibility of single photo-electronic devices makes it difficult to achieve the high efficiency under light intensity range. The key to overcome limits is to develop the system consisting of a set of solar cells. In this work, we predict the model parameters under various conditions combination of three model parameters change with the relationship between light and temperature and then predict the value of the model parameters under various conditions and thus predict the components of the output characteristics under 0.5S UN--6.0 SUN. The results given in this work will provide a way to realize a high photo-electric conversion efficiency of the solar system in application.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Yuang-Tung Cheng ◽  
Jyh-Jier Ho ◽  
William Lee ◽  
Song-Yeu Tsai ◽  
Liang-Yi Chen ◽  
...  

The photovoltaic (PV) effects have been investigated and improved using efficient treatments both on single-crystalline (sc) and on multicrystalline (mc) silicon (Si) solar cells. The major effect of forming gas (FG) treatment on solar cell performance is the fill-factor values, which increase 3.75% and 8.28%, respectively, on sc-Si and mc-Si solar cells. As for the optimal 15%-H2ratio and 40-minute FG treatment, the conversion efficiency (η) values drastically increase to 14.89% and 14.31%, respectively, for sc- and mc-Si solar cells. Moreover, we can measure the internal quantum efficiency (IQE) values increase withH2-FG treatment under visible wavelength (400~900 nm) radiation. Thus based on the work in this research, we confirm thatH2passivation has become crucial both in PV as well as in microelectronics fields. Moreover, the developed mc-Si solar cell by properH2FG treatment is quite suitable for commercial applications.


2014 ◽  
Vol 2 (15) ◽  
pp. 5427-5433 ◽  
Author(s):  
Shugang Li ◽  
Zhongcheng Yuan ◽  
Jianyu Yuan ◽  
Ping Deng ◽  
Qing Zhang ◽  
...  

An expanded isoindigo unit (IBTI) has been incorporated into a donor–acceptor conjugated polymer for the first time. The PCE of the solar cell device based on the new polymer reached 6.41% with a fill factor of 0.71.


2014 ◽  
Vol 2 (45) ◽  
pp. 19282-19289 ◽  
Author(s):  
Zhenggang Huang ◽  
Elisa Collado Fregoso ◽  
Stoichko Dimitrov ◽  
Pabitra Shakya Tuladhar ◽  
Ying Woan Soon ◽  
...  

The performance of bulk heterojunction solar cells based on a novel donor polymer DPP-TT-T was optimised by tuning molecular weight and thermal annealing.


Author(s):  
Hung-Cheng Chen ◽  
Jie-Min Lan ◽  
Hsiang-Lin Hsu ◽  
Chia-Wei Li ◽  
Tien-Shou Shieh ◽  
...  

Three different benzylammonium halide (Cl, Br, and I) salts were investigated to elucidate their effects as additives on MAPbI3 perovskite surface morphology, crystal structure, optical properties, and solar cell performance and stability.


Sign in / Sign up

Export Citation Format

Share Document