Electronic Structure of the Layered Ferroelectric Perovskite SrBi2Ta2O9

1996 ◽  
Vol 433 ◽  
Author(s):  
J Robertson ◽  
C W Chen ◽  
W L Warren

AbstractThe band structure of the Bi layered perovskite SrBi2Ta2O9 (SBT) has been calculated by the tight binding method. We find both the valence and conduction band edges to consist of states primarily derived from the Bi-O layer rather than the perovskite Sr-Ta-O blocks. The valence band maximum arises from 0 p and some Bi s states, while the conduction band minimum consists of Bi p states, with a band gap of 5.1 eV. It is argued that the Bi-O layers largely control the electronic response of SBT while the ferroelectric response originates from the perovskite Sr-Ta-O block. Bi and Ta centered traps are calculated to be shallow, which may account in part for the excellent fatigue properties of SBT.

1997 ◽  
Vol 493 ◽  
Author(s):  
J Robertson ◽  
C W Chen

ABSTRACTThe electronic structure of SrBi2Ta2O9 and related oxides such as SrBi2Nb2O9, Bi2WO6 and Bi3Ti4O12 have been calculated by the tight-binding method. In each case, the band gap is about 4.1 eV and the band edge states occur on the Bi-O layers and consist of mixed O p/Bi s states at the top of the valence band and Bi p states at the bottom of the conduction band. The main difference between the compounds is that Nb 5d and Ti 4d states in the Nb and Ti compounds lie lower than the Ta 6d states in the conduction band. The surface pinning levels are found to pin Schottky barriers 0.8 eV below the conduction band edge.


1992 ◽  
Vol 259 ◽  
Author(s):  
A. Hughes ◽  
T-H. Shen ◽  
C.C. Matthai

ABSTRACTThe electronic density of states (DOS) for the Si(111) (√3×√3)-Sb system has been calculated using the tight binding method in the Extended Hiickel Approximation. We find that there is a gap of about 0.8eV between the valence band maximum (VBM) and a surface state. This is in contrast with the case of the unreconstructed (lxl) surface where the Fermi level lies at the surface state.


2012 ◽  
Vol 725 ◽  
pp. 265-268 ◽  
Author(s):  
Minoru Oshima ◽  
Kenji Yoshino

We performed first-principle calculations to investigate the effects of F, Cl and Sb impurities on the electronic properties of SnO2. We obtained, firstly, the electronic structure of SnO2, a valence band maximum of SnO2is an O 2p orbital and a conduction band minimum was an antibonding Sn 5s and O 2p orbitals dominantly. Secondly, those impurites doped SnO2was obtained the electronic structure. The F, Cl and Sb impurities as n-type dopants exhibited shallow donors. This calculation results were in good agreement with our prvious experiment that we obtained the low resistivity SnO2.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750155 ◽  
Author(s):  
N. A. Ismayilova ◽  
G. S. Orudzhev ◽  
S. H. Jabarov

The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen–Goedecker–Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are [Formula: see text], [Formula: see text], respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.


RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 40922-40928 ◽  
Author(s):  
Yuman Peng ◽  
Zuju Ma ◽  
Junjie Hu ◽  
Kechen Wu

In order to utilize the visible light to catalyze water, UV-active Sr2Ta2O7 is engineered via co-doping of S and V/Nb to shift the valence band maximum upward and conduction band minimum downward by approximately 1 eV, respectively.


1999 ◽  
Vol 13 (09n10) ◽  
pp. 1157-1162 ◽  
Author(s):  
C. Noce ◽  
M. Cuoco

We introduce a microscopic model for the compound Sr 2 RuO 4, which is at the present the only known layered-perovskite superconductor without copper. The one-particle Hamiltonian is deduced by means of an approach that combines the extended Hückel theory and the tight-binding method. Adding two-body terms to this Hamiltonian, as the local Coulomb interaction and the Hund coupling, the magnetic properties are determined. It is found that the system is close to a ferromagnetic instability and this result supports a superconducting phase with p -wave symmetry.


Sign in / Sign up

Export Citation Format

Share Document