RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 40922-40928 ◽  
Author(s):  
Yuman Peng ◽  
Zuju Ma ◽  
Junjie Hu ◽  
Kechen Wu

In order to utilize the visible light to catalyze water, UV-active Sr2Ta2O7 is engineered via co-doping of S and V/Nb to shift the valence band maximum upward and conduction band minimum downward by approximately 1 eV, respectively.


2012 ◽  
Vol 725 ◽  
pp. 265-268 ◽  
Author(s):  
Minoru Oshima ◽  
Kenji Yoshino

We performed first-principle calculations to investigate the effects of F, Cl and Sb impurities on the electronic properties of SnO2. We obtained, firstly, the electronic structure of SnO2, a valence band maximum of SnO2is an O 2p orbital and a conduction band minimum was an antibonding Sn 5s and O 2p orbitals dominantly. Secondly, those impurites doped SnO2was obtained the electronic structure. The F, Cl and Sb impurities as n-type dopants exhibited shallow donors. This calculation results were in good agreement with our prvious experiment that we obtained the low resistivity SnO2.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750155 ◽  
Author(s):  
N. A. Ismayilova ◽  
G. S. Orudzhev ◽  
S. H. Jabarov

The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen–Goedecker–Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are [Formula: see text], [Formula: see text], respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun-Chang Liu ◽  
Chen-Min Dai ◽  
Yimeng Min ◽  
Yi Hou ◽  
Andrew H. Proppe ◽  
...  

AbstractIn lead–halide perovskites, antibonding states at the valence band maximum (VBM)—the result of Pb 6s-I 5p coupling—enable defect-tolerant properties; however, questions surrounding stability, and a reliance on lead, remain challenges for perovskite solar cells. Here, we report that binary GeSe has a perovskite-like antibonding VBM arising from Ge 4s-Se 4p coupling; and that it exhibits similarly shallow bulk defects combined with high stability. We find that the deep defect density in bulk GeSe is ~1012 cm−3. We devise therefore a surface passivation strategy, and find that the resulting GeSe solar cells achieve a certified power conversion efficiency of 5.2%, 3.7 times higher than the best previously-reported GeSe photovoltaics. Unencapsulated devices show no efficiency loss after 12 months of storage in ambient conditions; 1100 hours under maximum power point tracking; a total ultraviolet irradiation dosage of 15 kWh m−2; and 60 thermal cycles from −40 to 85 °C.


Nanoscale ◽  
2021 ◽  
Author(s):  
Dan-Dong Wang ◽  
Xin-Gao Gong ◽  
Jihui Yang

Interlayer interactions play important roles in manipulating the electronic properties of layered semiconductors. One common mechanism is that the valance band maximum (VBM) and the conduction band minimum (CBM) in...


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4422-4427 ◽  
Author(s):  
Lijing Zhang ◽  
Xiufang Zhu ◽  
Zhihui Wang ◽  
Shan Yun ◽  
Tan Guo ◽  
...  

The uniform distribution of S dopants elevated the valence band maximum by mixing S 3p with the upper valence band states of ZnO. The valence band maxima of S–ZnO was 0.37 eV higher than that of ZnO.


1996 ◽  
Vol 53 (24) ◽  
pp. R16152-R16155 ◽  
Author(s):  
Th. Straub ◽  
K. Fauth ◽  
Th. Finteis ◽  
M. Hengsberger ◽  
R. Claessen ◽  
...  

1988 ◽  
Vol 3 (1) ◽  
pp. 164-166
Author(s):  
Richard P. Beres ◽  
Roland E. Allen ◽  
John D. Dow

The energy levels of antisite defects at a GaAs/Ge (110) interface are calculated and shown to be essentially unaltered with respect to the GaAs valence band maximum by different choices of the valence band offset.


Sign in / Sign up

Export Citation Format

Share Document