Light Emission from Intrinsic and Doped Silicon-Rich Silicon Oxide: from the Visible to 1.6 ΜM

1996 ◽  
Vol 452 ◽  
Author(s):  
L. Tsybeskov ◽  
K. L. Moore ◽  
P. M. Fauchet ◽  
D. G. Hall

AbstractSilicon-rich silicon oxide (SRSO) films were prepared by thermal oxidation (700°C-950°C) of electrochemically etched crystalline silicon (c-Si). The annealing-oxidation conditions are responsible for the chemical and structural modification of SRSO as well as for the intrinsic light-emission in the visible and near infra-red spectral regions (2.0–1.8 eV, 1.6 eV and 1.1 eV). The extrinsic photoluminescence (PL) is produced by doping (via electroplating or ion implantation) with rare-earth (R-E) ions (Nd at 1.06 μm, Er at 1.5 μm) and chalcogens (S at ∼1.6 μm). The impurities can be localized within the Si grains (S), in the SiO matrix (Nd, Er) or at the Si-SiO interface (Er). The Er-related PL in SRSO was studied in detail: the maximum PL external quantum efficiency (EQE) of 0.01–0.1% was found in samples annealed at 900°C in diluted oxygen (∼ 10% in N2). The integrated PL temperature dependence is weak from 12K to 300K. Light emitting diodes (LEDs) with an active layer made of an intrinsic and doped SRSO are manufactured and studied: room temperature electroluminescence (EL) from the visible to 1.6 μmhas been demonstrated.

2010 ◽  
Vol 16 (S2) ◽  
pp. 824-825
Author(s):  
F Fabbri ◽  
L Lazzarini ◽  
G Salviati ◽  
N Fukata

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


1997 ◽  
Vol 486 ◽  
Author(s):  
L. Tsybeskov ◽  
G. F. Grom ◽  
K. D. Hirschman ◽  
H. A. Lopez ◽  
S. Chan ◽  
...  

AbstractPorous silicon (PSi) was doped by Er using electromigration from a solution and converted to Er-doped silicon-rich silicon oxide (SRSO:Er) by partial thermal oxidation at 600–950°C following densification at 1100°C in an inert atmosphere. Room-temperature photoluminescence (PL) at ∼1.5 μm is intense and decreases by less than 20% from 12 K to 300 K. The PL spectrum of SRSO:Er reveals no luminescence bands related to Si-bandedgerecombination, point defects or dislocations, and shows that the Er3+ centers are the most efficient radiative recombination centers. A light-emitting diode (LED) with an active layer made of SRSO:Er was manufactured using a pre-oxidation cleaning step to increase the quality of the interface between SRSO:Er and the top electrode. Room temperature electroluminescence at ∼1.5 μm was demonstrated.


2005 ◽  
Vol 108-109 ◽  
pp. 755-760 ◽  
Author(s):  
Wolfgang Skorupa ◽  
J.M. Sun ◽  
S. Prucnal ◽  
L. Rebohle ◽  
T. Gebel ◽  
...  

Using ion implantation different rare earth luminescent centers (Gd3+, Tb3+, Eu3+, Ce3+, Tm3+, Er3+) were formed in the silicon dioxide layer of a purpose-designed Metal Oxide Silicon (MOS) capacitor with advanced electrical performance, further called a MOS-light emitting device (MOSLED). Efficient electroluminescence was obtained for the wavelength range from UV to infrared with a transparent top electrode made of indium-tin oxide. Top values of the efficiency of 0.3 % corresponding to external quantum efficiencies distinctly above the percent range were reached. The electrical properties of these devices such as current-voltage and charge trapping characteristics, were also evaluated. Finally, application aspects to the field of biosensing will be shown.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
J. Li ◽  
O. H. Y. Zalloum ◽  
T. Roschuk ◽  
C. L. Heng ◽  
J. Wojcik ◽  
...  

Rare earth (Tb or Ce)-doped silicon oxides were deposited by electron cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD). Silicon nanocrystals (Si-ncs) were formed in the silicon-rich films during certain annealing processes. Photoluminescence (PL) properties of the films were found to be highly dependent on the deposition parameters and annealing conditions. We propose that the presence of a novel sensitizer in the Tb-doped oxygen-rich films is responsible for the indirect excitation of the Tb emission, while in the Tb-doped silicon-rich films the Tb emission is excited by the Si-ncs through an exciton-mediated energy transfer. In the Ce-doped oxygen-rich films, an abrupt increase of the Ce emission intensity was observed after annealing at 1200∘C. This effect is tentatively attributed to the formation of Ce silicate. In the Ce-doped silicon-rich films, the Ce emission was absent at annealing temperatures lower than 1100∘C due to the strong absorption of Si-ncs. Optimal film compositions and annealing conditions for maximizing the PL intensities of the rare earths in the films have been determined. The light emissions from these films were very bright and can be easily observed even under room lighting conditions.


1996 ◽  
Vol 452 ◽  
Author(s):  
Karen L. Moore ◽  
Leonid Tsybeskov ◽  
Philippe M. Fauchet ◽  
Dennis G. Hall

AbstractRoom-temperature photoluminescence (PL) peaking at 1.1 eV has been found in electrochemically etched mesoporous silicon annealed at 950°C. Low-temperature PL spectra clearly show a fine structure related to phonon-assisted transitions in pure crystalline silicon (c-Si) and the absence of defect-related (e.g.P-line) and impurity-related (e.g.oxygen, boron) transitions. The maximum PL external quantum efficiency (EQE) is found to be better than 0.1% with a weak temperature dependence in the region from 12K to 400K. The PL intensity is a linear function of excitation intensity up to 100 W/cm2. The PL can be suppressed by an external electric field ≥ 105 V/cm. Room temperature electroluminescence (EL) related to the c-Si band-edge is also demonstrated under an applied bias ≤ 1.2 V and with a current density ≈ 20 mA/cm2. A model is proposed in which the radiative recombination originates from recrystallized Si grains within a non-stoichiometric Si-rich silicon oxide (SRSO) matrix.


1998 ◽  
Vol 536 ◽  
Author(s):  
Se-Young Seo ◽  
Jung H. Shin ◽  
Choochon Lee

AbstractThe photoluminescent properties of erbium doped silicon rich silicon oxide (SRSO) is investigated. The silicon content of SRSO was varied from 43 to 33 at. % and Er concentration was 0.4–0.7 at. % in all cases. We observe strong 1.54 μ m luminescence due to 4I13/2⇒4I15/2 Er3+ 4f transition, excited via energy transfer from carrier recombination in silicon nanoclusters to Er 4f shells. The luminescent lifetimes at the room temperature are found to be 4–7 msec, which is longer than that reported from Er in any semiconducting host material, and comparable to that of Er doped SiO2 and A12O3. The dependence of the Er3+ luminescent intensities and lifetimes on temperature, pump power and on background illumination shows that by using SRSO, almost all non-radiative decay paths of excited Er3+ can be effectively suppressed, and that such suppression is more important than increasing excitation rate of Er3+. A planar waveguide using Er doped SRSO is also demonstrated.


2001 ◽  
Vol 90 (11) ◽  
pp. 5835-5837 ◽  
Author(s):  
G. Z. Ran ◽  
Y. Chen ◽  
W. C. Qin ◽  
J. S. Fu ◽  
Z. C. Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document