AFM Observations on the Growth Mechanisms of Epitaxial Perovskite Oxide SrRuO3 Thin Films

1997 ◽  
Vol 474 ◽  
Author(s):  
R. A. Rao ◽  
Q. Gan ◽  
C. B. Eom

ABSTRACTThe growth mechanism and surface morphology of epitaxial SrRuO3 thin films deposited on exact and vicinal (001) SrTiO3 and exact (001) LaAlO3 substrates has been studied. Vicinal substrates with miscut angle, a, up to 4° toward [010] direction were used. Atomic force microscope images show that the films grown on exact (001) SrTiO3 substrate had a growth mechanism involving two dimensional nucleation. In contrast, characteristic step patterns were observed on the films deposited on vicinal substrates, suggesting that these films had a step flow growth mode. The films deposited on exact (001) LaAlO3 substrates had a three dimensional island growth, due to the incoherence between the film and substrate lattice. These results were found to be consistent with the results of x-ray diffraction analysis of the in-plane domain structure.

1998 ◽  
Vol 537 ◽  
Author(s):  
Margarita P. Thompson ◽  
Andrew R. Drews ◽  
Changhe Huang ◽  
Gregory W. Auner

AbstractAIN thin films were deposited at various substrate temperatures via Plasma Source Molecular Beam Epitaxy. The films were grown on 6H-SiC (0001) substrates. Reflection High Energy Electron Diffraction and Atomic Force Microscopy showed a dramatic change in the surface morphology of the film grown at 640°C. This is attributed to a change in the growth mechanism from pseudomorphic at lower temperatures to three-dimensional at higher than 640°C temperatures. Photoreflectance measurements showed an absorption shift toward 200 nm as the deposition temperature increases which is attributed to the change in the growth mechanism at higher temperatures. X-Ray Diffraction was unable to conclusively determine the AIN (0002) peak due to a significant diffuse intensity from the SiC (0002) peak. A MIS structure was created by depositing Pt contacts on the film grown at 500°C. I-V measurements showed that the Pt/AIN contact is Schottky.


1999 ◽  
Vol 4 (S1) ◽  
pp. 142-148
Author(s):  
Margarita P. Thompson ◽  
Andrew R. Drews ◽  
Changhe Huang ◽  
Gregory W. Auner

AlN thin films were deposited at various substrate temperatures via Plasma Source Molecular Beam Epitaxy. The films were grown on 6H-SiC (0001) substrates. Reflection High Energy Electron Diffraction and Atomic Force Microscopy showed a dramatic change in the surface morphology of the film grown at 640°C. This is attributed to a change in the growth mechanism from pseudomorphic at lower temperatures to three-dimensional at higher than 640°C temperatures. Photoreflectance measurements showed an absorption shift toward 200 nm as the deposition temperature increases which is attributed to the change in the growth mechanism at higher temperatures. X-Ray Diffraction was unable to conclusively determine the AlN (0002) peak due to a significant diffuse intensity from the SiC (0002) peak. A MIS structure was created by depositing Pt contacts on the film grown at 500°C. I-V measurements showed that the Pt/AlN contact is Schottky.


1997 ◽  
Vol 474 ◽  
Author(s):  
Q. Gan ◽  
R. A. Rao ◽  
C.B Eom

ABSTRACTWe have grown epitaxial thin films of isotropie metallic oxide SrRuC>3 on both exact and vicinal (001) SrTiO3 substrates with miscut angle (α) up to 5.0° and miscut direction (β) up to 37° away from the in-plane [010] axis. The effects of both α and β on the epitaxial growth and domain structure of epitaxial SrRuC>3 thin films were studied by x-ray diffraction and atomic force microscopy (AFM). On vicinal SrTiO3 substrates with a large miscut angle (α = 1.7°, 2.0°, 4.1°, and 5.0°) and miscut direction close to the [010] axis, single crystal epitaxial (110)° SrRuO3 thin films were obtained. [The superscript o refers to the Miller indices based on the orthorhombic unit cell.] Decreasing the substrate miscut angle or aligning the miscut direction close to the [110] axis (β = 45°) resulted in an increase of 90° domains in the plane. The films grown on vicinal substrates displayed a significant improvement in crystalline quality and in-plane epitaxial alignment as compared to the films grown on exact (001) SrTiO3 substrates. AFM revealed that as the miscut angle increased the growth mechanism changed from two dimensional nucleation to step flow growth.


1999 ◽  
Vol 595 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

AbstractWe present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2000 ◽  
Vol 5 (S1) ◽  
pp. 124-130 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

We present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2005 ◽  
Vol 875 ◽  
Author(s):  
Y. Z. Yoo ◽  
O. Chmaissem ◽  
S. Kolesnik ◽  
B. Dabrowski ◽  
C. W. Kimball ◽  
...  

AbstractSrRuO3 (SRO) thin films were grown on SrTiO3 (100) substrates using the pulsed laser deposition method. The films' growth properties widely changed in response to different working oxygen partial pressures. An island growth mode was dominant for low pressures up to 10 mTorr followed by a step flow growth mode at 60 mTorr and step flow plus 2 D growth at 200 mTorr then reverting back to island growth at 300 mTorr. Significant out-of-plane strains of SRO films were observed for low growth pressures (up to 10 mTorr) but became notably reduced at 60 mTorr and continued to decrease gradually with further pressure increases. Formation of Ru vacancies occurs regardless of the working pressure values and appears to be minimized at 60 mTorr. Highest TC's were obtained in films exhibiting the step flow growth mode. The role of Ru deficiencies in relation to strain, growth mode, and magnetic properties is discussed.


2001 ◽  
Vol 673 ◽  
Author(s):  
A. Maxwell Andrews ◽  
J.S. Speck ◽  
A.E. Romanov ◽  
M. Bobeth ◽  
W. Pompe

ABSTRACTAn approach is developed for understanding the cross-hatch morphology in lattice mismatched heteroepitaxial film growth. It is demonstrated that both strain relaxation associated with misfit dislocation formation and subsequent step elimination (e.g. by step-flow growth) are responsible for the appearance of nanoscopic surface height undulations (0.1-10 nm) on a mesoscopic (∼100 nm) lateral scale. The results of Monte Carlo simulations for dislocation- assisted strain relaxation and subsequent film growth predict the development of cross-hatch patterns with a characteristic surface undulation magnitude ∼50 Å in an approximately 70% strain relaxed In0.25Ga0.75As layers. The model is supported by atomic force microscopy (AFM) observations of cross-hatch morphology in the same composition samples grown well beyond the critical thickness for misfit dislocation generation.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


Sign in / Sign up

Export Citation Format

Share Document