The Effect of Miscut Angle and Miscut Direction of Vicinal (001) SrTiO3 Substrates on The Domain Structure of Epitaxial SrRuO3 Thin Films

1997 ◽  
Vol 474 ◽  
Author(s):  
Q. Gan ◽  
R. A. Rao ◽  
C.B Eom

ABSTRACTWe have grown epitaxial thin films of isotropie metallic oxide SrRuC>3 on both exact and vicinal (001) SrTiO3 substrates with miscut angle (α) up to 5.0° and miscut direction (β) up to 37° away from the in-plane [010] axis. The effects of both α and β on the epitaxial growth and domain structure of epitaxial SrRuC>3 thin films were studied by x-ray diffraction and atomic force microscopy (AFM). On vicinal SrTiO3 substrates with a large miscut angle (α = 1.7°, 2.0°, 4.1°, and 5.0°) and miscut direction close to the [010] axis, single crystal epitaxial (110)° SrRuO3 thin films were obtained. [The superscript o refers to the Miller indices based on the orthorhombic unit cell.] Decreasing the substrate miscut angle or aligning the miscut direction close to the [110] axis (β = 45°) resulted in an increase of 90° domains in the plane. The films grown on vicinal substrates displayed a significant improvement in crystalline quality and in-plane epitaxial alignment as compared to the films grown on exact (001) SrTiO3 substrates. AFM revealed that as the miscut angle increased the growth mechanism changed from two dimensional nucleation to step flow growth.

2021 ◽  
pp. 2150310
Author(s):  
Weiyuan Wang ◽  
Jiyu Fan ◽  
Huan Zheng ◽  
Jing Wang ◽  
Hao Liu ◽  
...  

We have presented the structural, surface morphology, magnetic and resistivity data for perovskite LaMnO3 epitaxial thin films which are fabricated on well-oriented (001) LaAlO3 substrates by pulsed laser deposition technique. X-ray diffraction [Formula: see text]–[Formula: see text] linear scans and reciprocal space mapping measurement confirm that the out-of-plane and in-plane epitaxial relationship are LMO(001)/LAO(001) and LMO(110)/LAO(110), respectively. Surface roughness determined by atomic force microscopy was no more than 0.3 nm. In the whole studied temperature range, all films only show a paramagnetic behavior instead of any magnetic phase transitions. Correspondingly, the electron transport behaviors always exhibit an insulting state as the temperature changes from high to low. However, we find that none of theoretical models can individually be used to understand their conductive mechanisms. Further studies indicated that charge carries of high and low temperature region obey adiabatic and nonadiabatic small polaronic hopping mechanisms, respectively. This finding offers new ways of exploiting the abnormal ferromagnetism in LaMnO3 multilayer thin films.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2085
Author(s):  
Yogesh Sharma ◽  
Elizabeth Skoropata ◽  
Binod Paudel ◽  
Kyeong Tae Kang ◽  
Dmitry Yarotski ◽  
...  

We report on the growth of stoichiometric, single-crystal YCrO3 epitaxial thin films on (001) SrTiO3 substrates using pulsed laser deposition. X-ray diffraction and atomic force microscopy reveal that the films grew in a layer-by-layer fashion with excellent crystallinity and atomically smooth surfaces. Magnetization measurements demonstrate that the material is ferromagnetic below 144 K. The temperature dependence of dielectric permittivity shows a characteristic relaxor-ferroelectric behavior at TC = 375–408 K. A dielectric anomaly at the magnetic transition temperature indicates a close correlation between magnetic and electric order parameters in these multiferroic YCrO3 films. These findings provide guidance to synthesize rare-earth, chromite-based multifunctional heterostructures and build a foundation for future studies on the understanding of magnetoelectric effects in similar material systems.


1996 ◽  
Vol 441 ◽  
Author(s):  
P. Fons ◽  
S. Niki ◽  
A. Yamada ◽  
D. J. Tweet

AbstractDue to its high near bandedge absorption, CuInSe2 is considered to be one of the most promising solar cell materials. As CuInSe2 films are usually grown by metastable processes, the Cu/In ratio often deviates from the ideal ratio of unity. To investigate the structural and morphological changes induced by such stoichiometric variations we have grown a series of epitaxial CuInSe2 epitaxial thin films with varying Cu/In ratios by molecular beam epitaxy on GaAs(001) substrates from elemental sources at a growth temperature of 450° C. Overall structural, microstructural and surface morphological changes were observed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy, respectively. It was observed that as films deviated from stoichiometry, twinning occurred preferentially on the anion {1 · 1 · 2} planes.


2009 ◽  
Vol 1222 ◽  
Author(s):  
Hom R Kandel ◽  
Tar-Pin Chen ◽  
Hye-Won Seo ◽  
Milko Iliev ◽  
Paritosh Wadekar ◽  
...  

AbstractWe have fabricated highly resistive materials PrBa2 (Cu1-xMx) 3O7 (M=Al, Ga, x = 0.20) by doping metals Ga and Al on PrBa2Cu3O7(PBCO). X-ray data indicated no significant second phases in substituting Cu by Al or Ga up to 20%.The electrical resistivity of these materials were three to four orders in magnitude higher than PBCO at 200K, which may give an effective potential barrier to YBCO in high Tc S-I-S Josephson junction. Epitaxial thin films of these materials were grown using KrF excimer laser on LAO (110) single crystal substrates. X-ray diffraction (XRD) and atomic force microscopy (AFM) were deployed to study the crystal orientation, epitaxy and roughness of the single crystal thin films. Micro Raman spectroscopy was carried out to investigate the dopant site in PBCO.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2003 ◽  
Vol 780 ◽  
Author(s):  
C.Z. Dinu ◽  
R. Tanasa ◽  
V.C. Dinca ◽  
A. Barbalat ◽  
C. Grigoriu ◽  
...  

AbstractPulsed Laser Deposition method (PLD) was used to grow nitinol (NiTi) thin films with goal of investigating their biocompatibility. High purity Ni and Ti targets were alternatively ablated in vacuum with a laser beam (λ=355 nm, 10 Hz) and the material was collected on room temperature Ti substrates. X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and atomic force microscopy analyses have been performed to investigate the chemical composition, crystalline structure and surface morphology of the NiTi films. The nitinol layers biocompatibility has been tested using as a metric the extent to whichthe cells adhereduring the culture period on the surface of NiTi layers deposited on Ti substrates. Vero and fibroblast cell lines dispersed into MEM (Eagle) solution containing 8% fetal bovine serum, at 37° C, were used for tests. Preliminary studies indicate that the interaction at the interface is specifically controlled by the surface morphology, (especially by surface roughness), and by the chemical state of the surface. Cell behavior after contact with NiTi/Ti structure for different intervals (18, 22 and 25 days for the Vero cells, and after 10 and 25 days for fibroblasts) supports the conclusion that NiTi is a very good candidate as a biocompatible material.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


Sign in / Sign up

Export Citation Format

Share Document