Development Of Diamond Based Power Microelectronics

1997 ◽  
Vol 483 ◽  
Author(s):  
J. L. Davidson ◽  
W. P. Kang ◽  
Y. Gurbuz ◽  
D. V. Kerns ◽  
L. Davis ◽  
...  

AbstractDiamond based power device structures such as resistor, capacitor, Schottky diode, p-n diode, thyristor, and field emitters are being investigated. Diamond resistors similar to standard thick film components in form and dimension were fabricated of polycrystalline diamond film. Using PECVD (plasma-enhanced chemical vapor deposition) processing to achieve diamond dielectric layers, high power, high energy density capacitors have been built. Despite grain boundaries and defects of polycrystalline diamond film, electronic devices such as field-effecttransistors and Schottky diodes have been developed. We have fabricated micro-patterned microtip arrays with this versatile new diamond technology as electron emitters. This paper will review diamond technology and results of this work.

1994 ◽  
Vol 354 ◽  
Author(s):  
A. F. Myers ◽  
J. Liu ◽  
W. B. Choi ◽  
G. J. Wojak ◽  
J. J. Hren

AbstractDiamond is an attractive material for coating microfabricated metal and semiconductor field emitters, since it enhances the stability and emission characteristics of the emitter. In the present study, polycrystalline diamond thin films were grown on silicon and molybdenum field emitters by microwave plasma chemical vapor deposition, using the bias-enhanced nucleation technique. High resolution transmission electron microscopy (TEM) was used to analyze the morphology of the diamond film and the structure of the diamond/emitter interface. Electron diffraction patterns and high resolution images indicate the presence of a polycrystalline diamond film, as well as a polycrystalline SiC layer between the diamond film and the Si emitter. A carbide interlayer was also found to exist between the diamond and the Mo emitter surface. Parallel electron energy loss spectroscopy confirms the TEM identification of a polycrystalline diamond film.


1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


2004 ◽  
Vol 13 (11-12) ◽  
pp. 2024-2030 ◽  
Author(s):  
R. Ikeda ◽  
M. Hayashi ◽  
A. Yonezu ◽  
T. Ogawa ◽  
M. Takemoto

1992 ◽  
Vol 7 (10) ◽  
pp. 2785-2790 ◽  
Author(s):  
V.P. Godbole ◽  
J. Narayan

We have developed a two-step hot filament chemical vapor deposition method to form polycrystalline films of diamond on Hastelloy substrates. The first step at a lower temperature results in the deposition of a composite layer of carbon, diamond-like carbon, and diamond, which provide nucleation sites for diamond growth in the second step at a higher temperature. To obtain a cleaner amorphous carbon-free diamond film, we introduced an intermediate hydrogen etching step. Using this procedure, we have obtained high quality polycrystalline diamond film on Hastelloy substrates, as characterized by scanning electron microscopy and Raman measurements.


2021 ◽  
Author(s):  
Jin Zhang ◽  
Shichen Xu ◽  
Yeye Wen ◽  
Zhuo Chen ◽  
Nannan Ji ◽  
...  

Abstract High-frequency responsive electrochemical capacitor (EC), which can convert alternating current (AC) in the circuit to direct current (DC), is an ideal filtering capacitor with lightweight superiority to replace the bulky aluminum electrolytic capacitor (AEC). However, current electrodes are difficult to achieve high energy density and high-frequency response properties simultaneously, primarily due to the electrode structure dilemmas of maximizing the electrode area or accelerating the ion transport. Herein, strictly vertical graphene arrays (SVGAs) directly prepared by electric-field-assisted plasma enhanced chemical vapor deposition have been successfully designed as the main electrode material of ECs to ensure the ions rapidly adsorb/desorb within the richly available surface spaces. The SVGAs exhibit an excellent specific areal capacitance of 1.72 mF‧cm− 2 at Φ120 = 80.6° even after 500,000 cycles in the aqueous ECs, which is far better than that of most quasi-vertical electrodes and carbon-related materials. Impressively, the output voltage could also be improved to 2.5 V when using the organic electrolyte, and an ultra-high energy density of 4.75 mF‧V2‧cm− 2 at Φ120 = 80.6° can also be handily achieved. Moreover, both aqueous and organic ECs-SVGAs can well smooth arbitrary AC waveforms into DC signals, indicating that ECs-SVGAs have colossal potentials to replace outmoded AECs.


Author(s):  
K. Zhou ◽  
M. Dair ◽  
D. Wang ◽  
P. Han ◽  
B. Feng

Abstract A diameter of 30 mm polycrystalline diamond film has been deposited by magnet-enhanced DC plasma jet CVD. The diamond film was characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and surface profilograph. Results reveal that under the same depositing parameters, magnetic field can increase purity of diamond film, improve thickness uniformity of diamond film, but no influence on crystal perfection and size of microcrystal of diamond film. A discussion on magnetic effect is presented.


Sign in / Sign up

Export Citation Format

Share Document