Grain Boundary Structures and Properties in Polycrystalline Silicon

1981 ◽  
Vol 5 ◽  
Author(s):  
Y.S. Tsuo ◽  
J.B. Milstein ◽  
T. Surek

ABSTRACTThe method of preparation of polycrystalline silicon can have a strong influence on the types and distributions of grain boundaries, and thereby influence the electrical properties of devices made from such materials. Examples of methods employed in the preparation of polycrystalline silicon for solar cell applications include directional solidification (Czochralski pulling and various casting techniques), ribbon growth techniques (ribbon-to-ribbon, edgedefined film-fed growth, low-angle silicon sheet growth, edge supported pulling, silicon-on-ceramic), chemical and physical vapor deposition (CVD and PVD) on silicon and foreign substrates, recrystallization techniques (laser, electron beam), and others such as graphoepitaxy and electrodeposition. This paper reviews the important morphological features such as grain size and defect structures of the various polycrystalline silicon materials and the influence of growth parameters on these features. The effects of grain boundaries on the electrical and photovoltaic properties of various polycrystalline silicon materials will also be discussed.

2009 ◽  
Vol 1153 ◽  
Author(s):  
Manuel J Romero ◽  
Fude Liu ◽  
Oliver Kunz ◽  
Johnson Wong ◽  
Chun-Sheng Jiang ◽  
...  

AbstractWe have investigated the local electron transport in polycrystalline silicon (pc-Si) thin-films by atomic force microscopy (AFM)-based measurements of the electron-beam-induced current (EBIC). EVA solar cells are produced at UNSW by <i>EVAporation</i> of a-Si and subsequent <i>solid-phase crystallization</i>–a potentially cost-effective approach to the production of pc-Si photovoltaics. A fundamental understanding of the electron transport in these pc-Si thin films is of prime importance to address the factors limiting the efficiency of EVA solar cells. EBIC measurements performed in combination with an AFM integrated inside an electron microscope can resolve the electron transport across individual grain boundaries. AFM-EBIC reveals that most grain boundaries present a high energy barrier to the transport of electrons for both p-type and n-type EVA thin-films. Furthermore, for p-type EVA pc-Si, in contrast with n-type, charged grain boundaries are seen. Recombination at grain boundaries seems to be the dominant factor limiting the efficiency of these pc-Si solar cells.


Sign in / Sign up

Export Citation Format

Share Document