Low Bias Dry Etching of Sic and Sicn in ICP NF3 Discharges

1998 ◽  
Vol 512 ◽  
Author(s):  
J. J. Wang ◽  
Hyun Cho ◽  
E. S. Lambers ◽  
S. J. Peartont ◽  
M. Ostling ◽  
...  

ABSTRACTA parametric study of the etching characteristics of 6H p+ and n+ SiC and thin film SiC0.8N0.2 in Inductively Coupled Plasma NF3/O2 and NF3/Ar discharges has been performed. The etch rates in both chemistries increase monotonically with NF3 percentage and rf chuck power reaching 3500Å·min−1 for SiC and 7500 Å·min−1 for SiCN. The etch rates go through a maximum with increasing ICP source power, which is explained by a trade-off between the increasing ion flux and the decreasing ion energy. The anisotropy of the etched features is also a function of ion flux, ion energy and atomic fluorine neutral concentration. Indium-tinoxide( ITO) masks display relatively good etch selectivity over SiC(maximum of 70:1) while photoresist etches more rapidly than SiC. The surface roughness of SiC is essentially independent of plasma composition for NF3/O2 discharges, while extensive surface degradation occurs for SiCN under high NF3:O2 conditions. The high ion flux available in the ICP tool allows etching even at very low dc self-biases, ≤ −10V, leading to very low damage pattern transfer.

1999 ◽  
Vol 574 ◽  
Author(s):  
K. P. Lee ◽  
K. B. Jung ◽  
H. Cho ◽  
D. Kumar ◽  
S. V. Pietambaram ◽  
...  

AbstractEffective pattern transfer into (Pr,Ba,Ca)MnO3 and (La,Sr)MnO3 has been achieved using Cl2/Ar discharges operated under Inductively Coupled Plasma conditions. Etch rates up to 900 Å-min−1 for (La,Sr)MnO3 and 300 Å-min−1 for (Pr,Ba,Ca)MnO3 were obtained, with these rates being a strong function of ion flux, ion energy and ion-to-neutral ratio. The etching is still physically-dominated under all conditions, leading to significant surface smoothing on initially rough samples. Sub-micron (0.35 μm) features have been produced in both materials using SiNx as the mask.


1998 ◽  
Vol 510 ◽  
Author(s):  
T. Maeda ◽  
J. W. Lee ◽  
C. R. Abernathy ◽  
S. J. Pearton ◽  
F. Ren ◽  
...  

AbstractThe effects of Inductively Coupled Plasma (ICP) and Electron Cyclotron Resonance (ECR) H2 plasmas on GaAs metal semiconductor field effect transistors (MESFETs), high electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs) have been measured as a function of ion flux, ion energy and process pressure. The chemical effects of hydrogenation have been compared to direct physical bombardment by Ar plasmas under the same conditions. Si dopant passivation in MESFETs and HEMTs and C base-dopant passivation in HBTs produces much larger changes in sheet resistance, breakdown voltage and device gain or transconductance than Ar ion bombardment and suggests that H2-containing plasma chemistries (CH4/H2 for semiconductor etching, SiH4 for dielectric deposition, CHF3 for dielectric etching) should be avoided, or at least the exposure of the surface minimized. In some cases the device degradation is less for higher source power conditions, due to the suppression of cathode dc self-bias and hence ion energy.


1999 ◽  
Vol 4 (S1) ◽  
pp. 763-768
Author(s):  
Hyun Cho ◽  
Y.B. Hahn ◽  
D.C. Hays ◽  
K.B. Jung ◽  
S.M. Donovan ◽  
...  

The role of additive noble gases He, Ar and Xe to Cl2-based Inductively Coupled Plasmas for etching of GaN, AlN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with Cl2/Xe, while the highest rates for AlN and GaN were obtained with Cl2/He. Efficient breaking of the III-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AlN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of ∼ 80 for InN to GaN and InN to AlN were obtained.


1999 ◽  
Vol 595 ◽  
Author(s):  
A.P. Zhang ◽  
G. Dang ◽  
F. Ren ◽  
X.A. Cao ◽  
H. Cho ◽  
...  

AbstractThe effects of dc chuck self-bias and high density source power (which predominantly control ion energy and ion flux, respectively) on the electrical properties of n-GaN Schottky diodes exposed to Inductively Coupled Plasma of Cl2/Ar were examined. Both parameters were found to influence the diode performance, by reducing the reverse breakdown voltage and Schottky barrier height. All plasma conditions were found to produce a nitrogen-deficient surface, with a typical depth of the non-stoichiometry being ∼500 Å. Post-etch annealing was found to partially restore the diode characteristics.


2000 ◽  
Vol 5 (S1) ◽  
pp. 831-837
Author(s):  
A.P. Zhang ◽  
G. Dang ◽  
F. Ren ◽  
X.A. Cao ◽  
H. Cho ◽  
...  

The effects of dc chuck self-bias and high density source power (which predominantly control ion energy and ion flux, respectively) on the electrical properties of n-GaN Schottky diodes exposed to Inductively Coupled Plasma of Cl2/Ar were examined. Both parameters were found to influence the diode performance, by reducing the reverse breakdown voltage and Schottky barrier height. All plasma conditions were found to produce a nitrogen-deficient surface, with a typical depth of the non-stoichiometry being ∼ 500 Å. Post-etch annealing was found to partially restore the diode characteristics.


1999 ◽  
Vol 573 ◽  
Author(s):  
D. C. Hays ◽  
C. R. Abernathy ◽  
W. S. Hobson ◽  
S. J. Pearton ◽  
J. Han ◽  
...  

ABSTRACTSelective etching of InN over GaN and AlN, and of GaAs over both AlGaAs and InGaP was examined with a number of different plasma chemistries under inductively coupled plasma conditions. Selectivities up to 55 for InN/GaN and 20 for InN/AlN were achieved in IC1/Ar discharges. For GaAs/AlGaAs, maximum selectivities of 75(with BCl3/SF6) were obtained while for GaAs/InGaP values of 80(with BCl3/SF6) and 25(with BCl3/NF3) were achieved. Selective etching of InGaP over GaAs is possible with either CH4/H2 or BI3. The selectivity is a strong function of ion flux and ion energy, and can result from two factors – either formation of a nonvolatile etch product, or a difference in bond strength between the two materials.


1998 ◽  
Vol 537 ◽  
Author(s):  
Hyun Cho ◽  
Y.B. Hahn ◽  
D.C. Hays ◽  
K.B. Jung ◽  
S.M. Donovan ◽  
...  

AbstractThe role of additive noble gases He, Ar and Xe to Cl2-based Inductively Coupled Plasmas for etching of GaN, AIN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with Cl2/Xe, while the highest rates for AIN and GaN were obtained with Cl2/He. Efficient breaking of the III-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AIN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of ∼ 80 for InN to GaN and InN to AIN were obtained.


SPIN ◽  
2018 ◽  
Vol 08 (02) ◽  
pp. 1850002 ◽  
Author(s):  
Chuankun Han ◽  
Yiyong Yang ◽  
Weifeng Liu ◽  
Yijia Lu ◽  
Jia Cheng

Inductively coupled plasma (ICP) has been widely used in semiconductor manufacturing, especially in nanoscale etching and deposition process. It is important to understand the relationship among the 13.56[Formula: see text]MHz rf-biased power and the etching process. In this study, the effect of dual rf power on the SiO2 sputter etching is investigated by measuring the ion energy distributions (IEDs), ion flux and sputter etching rate. The results show that the IEDs transforms from uni-modal towards bi-modal distribution when rf-biased power is applied to electrode. The influence of source power, bias power, discharge pressure and current ratio on the ion flux, IEDs are investigated in detail. The energy separations measured by RFEA are in good agreement with analytical model. The ion flux can be modulated by the 13.56[Formula: see text]MHz rf-biased power. Moreover, the coil current ratio expands the control window of the ion bombardment energy for the ICP etch equipment while. Finally, an ion-enhanced etching model is introduced to obtain the sputter etching rate and reveals the influence of discharge conditions on the etch rate.


1998 ◽  
Vol 512 ◽  
Author(s):  
Hyun Cho ◽  
T. Maeda ◽  
J. D. MacKenzie ◽  
S. M. Donovan ◽  
C. R. Abemathy ◽  
...  

ABSTRACTAnisotropic pattern transfer has been performed for GaN, InN and AIN in Cl2/Ar, BI3/Ar and BBr3/Ar Inductively Coupled Plasmas(ICP). Controlled etch rates in the range of 500–1500Å·min−1 are obtained for III-nitride materials in Cl2/Ar chemistry. Etch selectivities of 100:1 were achieved for InN over both GaN and AIN in the BI3 mixtures, while for BBr3 discharges values of 100:1 for InN over AIN and 25:1 for InN over GaN were measured.


Sign in / Sign up

Export Citation Format

Share Document