Organic-Inorganic Crystals for Optical Devices

1998 ◽  
Vol 519 ◽  
Author(s):  
A. Ibanez ◽  
J. Zaccaro ◽  
P. L. Baldeck ◽  
R. Masse

AbstractTwo routes of crystal engineering and elaboration of optical materials are described. The former applied to the design of organic-inorganic crystals for quadratic nonlinear optics is supported by a strategy of deliberately engineered noncentrosymmetric structures built-up from herringbone motifs of 2-amino-5-nitropyridinium chromophore. The original crystal growth of a solid solution of a member of this family is presented and discussed. The latter is a simple and generic elaboration of stable organic nanocrystals embedded in sol-gel matrices. Several molecules and characterization techniques have been involved to demonstrate the validity of this preparation.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1738
Author(s):  
Saeid Vafaei ◽  
Alexander Wolosz ◽  
Catlin Ethridge ◽  
Udo Schnupf ◽  
Nagisa Hattori ◽  
...  

SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportunities to enhance hetero-material interfacial areas, leading to the performance improvement of materials and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggregates using high-resolution transmission electron microscopy (HRTEM). The results indicate that Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further crystallization is observed through the neighboring particles in a confined part of the aggregates, while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D SnO2 will provide new avenues for developing and producing high-performance, photofunctional nanomaterials via a cost-effective and scalable method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Bidaud ◽  
D. Berling ◽  
D. Jamon ◽  
E. Gamet ◽  
S. Neveu ◽  
...  

AbstractThis paper is aimed at investigating the process of photocrosslinking under Deep-UV irradiation of nanocomposite thin films doped with cobalt ferrite magnetic nanoparticles (MNPs). This material is composed of a hybrid sol–gel matrix in which MNP can be introduced with high concentrations up to 20 vol%. Deep-UV (193 nm) is not only interesting for high-resolution patterning but we also show an efficient photopolymerization pathway even in the presence of high concentration of MNPs. In this study, we demonstrate that the photocrosslinking is based on the free radical polymerization of the methacrylate functions of the hybrid precursor. This process is initiated by Titanium-oxo clusters. The impact of the nanoparticles on the photopolymerization kinetic and photopatterning is investigated. We finally show that the photosensitive nanocomposite is suitable to obtain micropatterns with sub-micron resolution, with a simple and versatile process, which opens many opportunities for fabrication of miniaturized magneto-optical devices for photonic applications.


1996 ◽  
Vol 52 (a1) ◽  
pp. C453-C453 ◽  
Author(s):  
C. Ruiz-Perez ◽  
J. González-Platas ◽  
A. C. Yanes ◽  
M. E. Torres ◽  
X. Solans

2011 ◽  
Vol 295-297 ◽  
pp. 813-816 ◽  
Author(s):  
Li Liu

Silicon dioxide-based nanocomposites offer large loading capacity for various doping chemicals or molecular complexes, high surface to volume ratio and customizable surface chemistry for the creation and development of novel sensors and devices [1-2]. When compared with other sol-gel materials, xerogels represent a class of nanocomposites that are relatively easy to fabricate but with unique thermal, acoustic, optical and mechanical properties for rapid sensor or device prototyping development [3-4]. Xerogels in solids are formed by controlled evaporation of the liquid in the hydro-gel. Their porosity and morphology depend largely on the temperature, gel chemical compositions and pH in the fabrication process. When impregnated with fluorescent compounds in their nanosize cavities, the doped xerogels exhibit strong and stable fluorescence properties that are useful for the developing of ion-exchange sensors and optical devices. However, the use of these fluorescently doped xerogels in forensic applications was still largely unexplored.


2018 ◽  
Vol 56 (1A) ◽  
pp. 197
Author(s):  
Nguyen Hoang Tuan

In this study, we present some results on the structure and properties of the solid solution of Bi0.5K0.5TiO3– BiFeCoO3 (BKT – BFCO) by Sol-gel method. Crystal structures of BKT – BFCO solid solutions were studies by XRD and Raman spectroscopy. The results were in good agreement with the previous reports of Bi0.5K0.5TiO3– BiFeO3 (BKT – BFO) and Bi0.5K0.5TiO3 – BiCoO3 (BKT – BCO) solid solutions. The magnetic properties were investigated via unsaturated M-H loop, which showed the competition of paramagnetic and antiferromagnetic ordering in BKT – BFCO. However, differing from the BKT – BFO and BKT – BCO solid solutions, the unclear values of saturated magnetism in BKT – BFCO raised the unexplained question, which needed further studies.


2002 ◽  
Vol 3 (4) ◽  
pp. 449-462 ◽  
Author(s):  
Sabine Manetta ◽  
Marcel Ehrensperger ◽  
Christian Bosshard ◽  
Peter Günter

2018 ◽  
Vol 47 (37) ◽  
pp. 12813-12826 ◽  
Author(s):  
Kassio P. S. Zanoni ◽  
Leandro P. Ravaro ◽  
Andrea S. S. de Camargo

By mostly focusing on the findings of our group, this concise review provides insights into the development of promising new host–guest optical materials based on sol–gel assemblies of versatile hosts and highly luminescent guests.


Sign in / Sign up

Export Citation Format

Share Document