Aluminum Foam, “Alporas”: The Production Process, Properties and Applications

1998 ◽  
Vol 521 ◽  
Author(s):  
T. Miyoshi ◽  
M. Itoh ◽  
S. Akiyama ◽  
A. Kitahara

ABSTRACTThe production of foamed aluminum has long been considered difficult to realize because of such problems as the low foamability of molten metal, the varying size of cellular structures, solidification shrinkage and so on. Recently these problems have been solved by a number of researches and some manufacturers produce foamed aluminum by their own methods. We have been employing a batch casting process and manufacturing foamed aluminum under the tradename ALPORAS® since 1986. This paper presents the manufacturing process, physical properties and some typical applications of ALPORAS.

2015 ◽  
Author(s):  
Adam R. Kaplan

Once a propeller is designed, the geometry must be produced One of the most common manufacturing methods for modern propellers is to produce a thickened casting so that the final geometry can be machined through grinding or milling. To ensure the casting will encompass the final geometry, several geometric corrections must be applied to account for the sand casting manufacturing process. The corrections provide compensation due to solidification shrinkage, solid shrinkage, machining tolerance, and distortion during cooling. The objective of this paper is to review and understand the mechanisms that result in geometric differences during the casting process. Common correction strategies will be recommended for correcting design geometry for pattern creation. Lastly, an implementation of a generalized correction methodology will be demonstrated using HydroComp PropCad, a commercial design tool for propeller geometries.


Alloy Digest ◽  
1999 ◽  
Vol 48 (3) ◽  

Abstract AMETEK 820 alloy is a powder metallurgically produced strip that is used in hardfacing weld wire. The production process, however, can produce other special strip compositions such as the nickel-chromium alloys used as resistance alloys. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on powder metal forms. Filing Code: Ni-549. Producer or source: AMETEK Specialty Metal Products.


2021 ◽  
pp. 1-11
Author(s):  
Song Gang ◽  
Wang Xiaoming ◽  
Wu Junfeng ◽  
Li Shufang ◽  
Liu Zhuowen ◽  
...  

In view of the production quality management of filter rods in the manufacturing and execution process of cigarette enterprises, this paper analyzes the necessity of implementing the manufacturing execution system (MES) in the production process of filter rods. In this paper, the filter rod quality system of cigarette enterprise based on MES is fully studied, and the constructive information management system demand analysis, cigarette quality control process, system function module design, implementation and test effect are given. This paper utilizes the Fuzzy analytic hierarchy process to find the optimal system for processing the manufacturing of cigarette. The implementation of MSE based filter rod quality information management system for a cigarette enterprise ensures the quality control in the cigarette production process. Through visualization, real-time and dynamic way, the information management of cigarette production is completed, which greatly improves the quality of cigarette enterprise manufacturing process.


2021 ◽  
Vol 13 (9) ◽  
pp. 1622
Author(s):  
Yihui Yang ◽  
Laura Balangé ◽  
Oliver Gericke ◽  
Daniel Schmeer ◽  
Li Zhang ◽  
...  

Accepting the ecological necessity of a drastic reduction of resource consumption and greenhouse gas emissions in the building industry, the Institute for Lightweight Structures and Conceptual Design (ILEK) at the University of Stuttgart is developing graded concrete components with integrated concrete hollow spheres. These components weigh a fraction of usual conventional components while exhibiting the same performance. Throughout the production process of a component, the positions of the hollow spheres and the level of the fresh concrete have to be monitored with high accuracy and in close to real-time, so that the quality and structural performance of the component can be guaranteed. In this contribution, effective solutions of multiple sphere detection and concrete surface modeling based on the technology of terrestrial laser scanning (TLS) during the casting process are proposed and realized by the Institute of Engineering Geodesy (IIGS). A complete monitoring concept is presented to acquire the point cloud data fast and with high-quality. The data processing method for multiple sphere segmentation based on the efficient combination of region growing and random sample consensus (RANSAC) exhibits great performance on computational efficiency and robustness. The feasibility and reliability of the proposed methods are verified and evaluated by an experiment monitoring the production of an exemplary graded concrete component. Some suggestions to improve the monitoring performance and relevant future work are given as well.


2011 ◽  
Vol 693 ◽  
pp. 179-184
Author(s):  
Thomas Jarlsmark ◽  
Jan Strömbeck ◽  
Mikael Terner ◽  
Jerry Wilkins

The ways to gain better quality and higher casting performance is an urgent topic among aluminium producers today. This issue is also often on the agenda at conferences like this and the subjects and technologies to achieve this varies. Controlling the molten metal flow by maintaining predefined levels or level patterns is one of many powerful tools to reach this goal. Precimeter Control specializes in applications for non-ferrous molten metal level measurement and molten metal flow control. By integration, or retrofitting, any new or existing casting line can easily be automatically controlled and gain improved casting performance in a cost efficient way. This paper will focus on the main benefits from automatic level control and how some plants have achieved improvements in their casting process of DC (Direct Chill) slab (or rolling ingot) casting after implementing such technology.


2011 ◽  
Vol 314-316 ◽  
pp. 1944-1947 ◽  
Author(s):  
Jozef Maščeník ◽  
Stefan Gaspar

Production of components, necessary for the construction of the machine resp. or device is a demanding manufacturing process. One of the possibilities of increasing efficiency and production quality is the introduction of unconventional technologies to the production process. Knowing the dependence of the impact of non-conventional technologies on the mechanical properties of products and their subsequent verification is an important aspect when designing and manufacturing them. The article deals with the impact of used unconventional technology, that means laser, plasma and water jet on the roughness of a cutting edge and microhardness of material S 355 J2 G3.


2015 ◽  
Vol 772 ◽  
pp. 263-267 ◽  
Author(s):  
Ramanathan Arunachalam ◽  
Majid Al-Maharbi ◽  
Yahya Al Kiyumi ◽  
Elyas Aal-Thani ◽  
Mohammed Al Mafraji

Metal matrix composites (MMC's) have attracted the attention of researchers for quite some time. In the last 15 years, many studies have been reported in this field of MMC production through various routes. The most commonly used process for producing MMC is stir casting process whereby the reinforcement material is incorporated into the molten metal by stirring. It is a relatively low cost manufacturing process that is capable of producing high quality MMC. However, the process is associated with issues such as attaining uniform distribution of particles, wettability between particles and porosity in the MMCs. Because of these challenges, there has been continuous improvement in the process as well as the design of the furnace. In this research, an innovatively designed bottom tapping furnace has been used to produce the MMCs and the produced sample is characterized.


DENKI-SEIKO ◽  
2008 ◽  
Vol 79 (4) ◽  
pp. 329-335
Author(s):  
Naoki Fuse ◽  
Kenichi Tate ◽  
Atsushi Komori

2001 ◽  
Author(s):  
Sayavur I. Bakhtiyarov ◽  
Ruel A. Overfelt

Abstract A novel multiphase flow model is presented for describing the pyrolisis of polymeric foam material in a lost foam casting process. FLOW-3D software (Flow Science, Inc.) has been used to simulate liquid metal filling dynamics and the molten metal-polymeric foam interface velocity in foam patterns of rectangular shape. The effect of the degradation gaseous products on the molten metal-polymeric foam interface velocity was taken into consideration through specially written sub-routing program. The results of the simulations are compared with the previously obtained experimental data for the lost foam iron casting.


Author(s):  
Armando Lopes Ramalho ◽  
Agostinho da Silva ◽  
Marcelo Calvete Gaspar ◽  
Carlos Capela ◽  
Luis Celorrio-Barragué ◽  
...  

Within a pulp industry production process, a drop in the performance of a wood log rotary debarker was identified. Such loss of performance was due to the occurrence of excessive wear of the device's cutting blades, requiring their regular and premature replacement. The material used to manufacture the cutting blades, Hardox 500, has characteristics considered adequate for the required use. However, it was concluded that the blade manufacturing process degraded its mechanical properties, leading to its premature wear when placed in service. The present study intends to propose, characterize, and validate an alternative cutting process to manufacture the debarker's cutting blades. Abrasive waterjet cutting technology was proposed to produce the cutting blades. The suitability of this manufacturing process is discussed considering the specified geometry and the material characteristics of the resulting cutting blades.


Sign in / Sign up

Export Citation Format

Share Document