Oxidation of PECVD SiC Deposited from Trimethylsilane

1998 ◽  
Vol 555 ◽  
Author(s):  
Peter A. DiFonzo ◽  
Mona Massuda ◽  
James T. Kelliher

AbstractThe stoichiometric composition and oxidation rates ( wet or dry ) of plasma enhanced chemical vapor deposited (PECVD) silicon carbide (SiC) films are effected by the deposition conditions of trimethylsilane (3MS) and carrier gas. We report the oxidation kinetics of SiC thin films deposited in a modified commercial PECVD reactor. A standard horizontal atmospheric furnace in the temperature range of 925–1100°C was used in the oxidation. Oxidized films were measured optically by commercially available interferometer and ellipsometer tools in addition to mechanically using a commercially available profilometer. Activation energies of the parabolic rates were in the range of 20.93 to 335.26 kJ/mol.

2016 ◽  
Vol 27 (12) ◽  
pp. 12340-12350 ◽  
Author(s):  
Amit Pawbake ◽  
Vaishali Waman ◽  
Ravindra Waykar ◽  
Ashok Jadhavar ◽  
Ajinkya Bhorde ◽  
...  

2003 ◽  
Vol 433-436 ◽  
pp. 451-454 ◽  
Author(s):  
Hoa Thi Mai Pham ◽  
Tolgay Akkaya ◽  
Charles R. de Boer ◽  
Pasqualina M. Sarro

1993 ◽  
Vol 309 ◽  
Author(s):  
P. J. Ding ◽  
B. Zheng ◽  
E. T. Eisenbraun ◽  
W. A. Lanford ◽  
A. E. Kaloyeros ◽  
...  

AbstractOxidation kinetics of plasma-assisted chemical vapor deposited (PA-CVD) copper films were investigated using Rutherford backscattering spectrometry (RBS). The PA-CVD copper films were deposited using hydrogen plasma reduction of bis(hexafluoroacetylacetonato) copper(II), Cu(hfa)2, precursor. Under identical experimental conditions, PA-CVD copper films oxidize more slowly than sputtered copper films. This decrease in oxidationis manifested both as a time delay at the beginning of the oxidation of the PA-CVD copper films and as a decrease in the rate of oxide growth at oxidation temperatures of 200ºC and below. The possivation appears to be caused by the hydrogen plasma present during depostion.


1994 ◽  
Vol 354 ◽  
Author(s):  
Dan Schwarcz ◽  
Ritva A.M. Keski-Kuha

AbstractSilicon Carbide (SiC) formed by chemical vapor deposition (CVD) has the highest reflectivity in the extreme ultraviolet (EUV) of any currently used optical material. The high temperature required for the CVD process, however, limits its suitability for coating optical components. To address this problem thin films have been sputtered onto optical surfaces from CVD βSiC targets. These films, while having reflectivity lower than that of CVD SiC, are nonetheless the best coatings available for reflectance in the spectral region below 1000À. While the initial properties are good, the EUV reflectivity degrades with time after deposition. A relative decrease of about 25% is evident in the reflectivity at 920Â after 2.5 years, and about 85% of this change occurs in the first three months. In fact, a decrease is observed in the minutes following deposition. In this study the degradation is characterized and a mechanism is proposed. Efforts underway to reduce or eliminate the degradation are discussed.


1994 ◽  
Vol 9 (1) ◽  
pp. 96-103 ◽  
Author(s):  
M.A. El Khakani ◽  
M. Chaker ◽  
A. Jean ◽  
S. Boily ◽  
J.C. Kieffer ◽  
...  

Due to its interesting mechanical properties, silicon carbide is an excellent material for many applications. In this paper, we report on the mechanical properties of amorphous hydrogenated or hydrogen-free silicon carbide thin films deposited by using different deposition techniques, namely plasma enhanced chemical vapor deposition (PECVD), laser ablation deposition (LAD), and triode sputtering deposition (TSD). a-SixC1−x: H PECVD, a-SiC LAD, and a-SiC TSD thin films and corresponding free-standing membranes were mechanically investigated by using nanoindentation and bulge techniques, respectively. Hardness (H), Young's modulus (E), and Poisson's ratio (v) of the studied silicon carbide thin films were determined. It is shown that for hydrogenated a-SixC1−x: H PECVD films, both hardness and Young's modulus are dependent on the film composition. The nearly stoichiometric a-SiC: H films present higher H and E values than the Si-rich a-SixC1−x: H films. For hydrogen-free a-SiC films, the hardness and Young's modulus were as high as about 30 GPa and 240 GPa, respectively. Hydrogen-free a-SiC films present both hardness and Young's modulus values higher by about 50% than those of hydrogenated a-SiC: H PECVD films. By using the FTIR absorption spectroscopy, we estimated the Si-C bond densities (NSiC) from the Si-C stretching absorption band (centered around 780 cm−1), and were thus able to correlate the observed mechanical behavior of a-SiC films to their microstructure. We indeed point out a constant-plus-linear variation of the hardness and Young's modulus upon the Si-C bond density, over the NSiC investigated range [(4–18) × 1022 bond · cm−3], regardless of the film composition or the deposition technique.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Sign in / Sign up

Export Citation Format

Share Document