Thermal Stability of Ir/TaN Electrode/Barrier on Thin Gate Oxide for MFMOS one Transistor Memory Application

1999 ◽  
Vol 596 ◽  
Author(s):  
Fengyan Zhang ◽  
Sheng Teng Hsu ◽  
Tingkai Li ◽  
Yoshi Ono ◽  
Jer-shen Maa ◽  
...  

AbstractThe Metal-Ferroelectric-Metal-Oxide-Silicon (MFMOS) one transistor memory requires a metal electrode directly on top of the thin gate oxide. The gate oxide used in our present MFMOS one transistor memory processing is 30 Å SiO2. Ir has been chosen for the bottom electrode and TaN was used as the barrier layer between the Ir and thin gate oxide. It has been shown from previous studies that a TaN barrier layer can effectively prevent the formation of iridium silicide and can enhance the adhesion between Ir and Si or SiO2 substrates. But it is more important that the TaN itself is stable and will not react with the gate oxide during ferroelectric material deposition, annealing and subsequent processing. In this paper, TaN barriers with different deposition conditions have been deposited on 30 Å gate oxide. 1500 Å Ir was deposited on the TaN barrier layer. Capacitors of Ir/TaN/gate SiO2/Si were defined by dry etching. Series RTP annealing were performed in oxygen from 500 to 650 °C with annealing times from 5 min to 90 min. The capacitor was also annealed in a nitrogen ambient at 1000°C for 10s. C-V and I-V studies were used to characterize the stability of the Ir/TaN/Gate SiO2 structure. It was observed that the Ir/TaN/Gate SiO2 is very stable during the above mentioned annealing conditions. The consumption and further oxidation of the gate oxide is negligible and would depend on the deposition condition of the TaN barrier layer. With optimized deposition conditions, a 220 Å TaN barrier layer can effectively prevent any iridium silicide formation and will not degrade the gate oxide during annealing processing. The interfaces between the TaN and gate SiO2 and between the gate SiO2 and Si substrate can be further improved by forming gas annealing.

2000 ◽  
Vol 655 ◽  
Author(s):  
Fengyan Zhang ◽  
Sheng Teng Hsu ◽  
Jer-shen Maa ◽  
Yoshi Ono ◽  
Ying Hong ◽  
...  

AbstractIr-Ta-O composite bottom electrode has extraordinary high temperature stability. It can maintain good conductivity and integrity even after 5min annealing at 1000 °C in oxygen ambient. The thermal stability of Ir-Ta-O on different substrates has been studied. It shows that Ir-Ta-O is also very stable on Si and SiO2 substrates. No hillock formation and peelings of the bottom electrode were observed after high temperature and long time annealing in O2 ambient. SEM, TEM, XRD, and AES have been used to characterize the Ir-Ta-O film and the interfaces between Ir-Ta-O bottom electrode and Si or SiO2 substrate. The composition and conductivity changes of the electrode during oxygen ambient annealing and the interdiffusion issue will be discussed. Furthermore, Ir-Ta-O/SiO2/Si capacitor with 30Å gate oxide was fabricated and the C-V and I-V characteristics were measured to confirm the stability of Ir-Ta-O on thin gate oxide.


2019 ◽  
Vol 963 ◽  
pp. 451-455 ◽  
Author(s):  
Kosuke Muraoka ◽  
Seiji Ishikawa ◽  
Hiroshi Sezaki ◽  
Tomonori Maeda ◽  
Shinichiro Kuroki

A thickness of Ba-introduced gate oxide was controlled with the oxygen concentration and a barrier layer thickness at a post-deposition annealing. The oxidation rate becomes slower with the low oxygen concentration and the thick barrier layer, and the thin oxide of 12 nm was realized with O2 5% and 9 nm of the barrier layer. This Ba-introduced thin gate oxide resulted in the field effect mobility of 13 cm2/Vs and the interface state density of 2×1011 cm-2eV-1 at 0.25 eV below the conduction band edge of 4H-SiC.


Author(s):  
N. David Theodore ◽  
Merit Hung

Silicon device-technology makes extensive use of polysilicon layers for capacitors, contact-materials, thin-film diodes, transistors and resistors. In metal-oxide-semiconductor field-effect transistors (MOSFETs) polysilicon is used as the gate electrode on top of a thin gate-oxide layer. The microstructure and stability of the polysilicon and gate-oxide layers can strongly influence electrical behavior of the transistors. Any microstructural deterioration that occurs as a result of processing can result in reduced charge-to-breakdown and lowered breakdown voltages. It is known that interfacial oxides inadvertently present at interfaces of silicon/polysilicon structures break-up as the structures are annealed, Whereas agglomeration of oxide is beneficial in some structures, in MOSFETs such deterioration would be disastrous. The stability of polysilicon/ gate-oxide structures for various processing conditions likely to be used during device-fabrication needs to be characterized. The present study investigates the thermal stability of polysilicon gate-electrode/ gate-oxide structures annealed in a hydrogen ambient at temperatures varying from 800°C to 1050°C.


2002 ◽  
Vol 12 (3) ◽  
pp. 57-60 ◽  
Author(s):  
B. Cretu ◽  
F. Balestra ◽  
G. Ghibaudo ◽  
G. Guégan

1987 ◽  
Vol 95 ◽  
Author(s):  
J. P. Conde ◽  
S. Aljishi ◽  
D. S. Shen ◽  
V. Chu ◽  
Z E. Smith ◽  
...  

AbstractWe study the dark conductivity σd, dark conductivity activation energy Ea and photoconductivity σph of a-Si:H,F/a-Si,Ge:H,F superlattices both perpendicular and parallel to the plane of the layers. In parallel transport, both the σph and σd are dominated by the alloy layer characteristics with the superposition of carrier confinement quantum effects. In perpendicular transport, the σd shows an interplay of quantum mechanical tunneling through the barriers and of classical thermal emission over the barrier layer and the σph is controlled by the decreasing absorption by the silicon barrier layer as the optical gap Eopt of the structure decreases.We also found that the multilayer structure allows to grow lower gap a-Si,Ge:H,F alloys than achievable under the same deposition conditions for bulk materials. This stabilizing effect allowed us to study low-gap superlattice structures and extract information about these very low gap (<1.2 eV) a- Si,Ge:H,F alloys.


2009 ◽  
Vol 30 (1) ◽  
pp. 014004 ◽  
Author(s):  
Liu Mengxin ◽  
Han Zhengsheng ◽  
Bi Jinshun ◽  
Fan Xuemei ◽  
Liu Gang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document