Highly Stable Ir-Ta-O Electrode for Ferroelectric Material Deposition

2000 ◽  
Vol 655 ◽  
Author(s):  
Fengyan Zhang ◽  
Sheng Teng Hsu ◽  
Jer-shen Maa ◽  
Yoshi Ono ◽  
Ying Hong ◽  
...  

AbstractIr-Ta-O composite bottom electrode has extraordinary high temperature stability. It can maintain good conductivity and integrity even after 5min annealing at 1000 °C in oxygen ambient. The thermal stability of Ir-Ta-O on different substrates has been studied. It shows that Ir-Ta-O is also very stable on Si and SiO2 substrates. No hillock formation and peelings of the bottom electrode were observed after high temperature and long time annealing in O2 ambient. SEM, TEM, XRD, and AES have been used to characterize the Ir-Ta-O film and the interfaces between Ir-Ta-O bottom electrode and Si or SiO2 substrate. The composition and conductivity changes of the electrode during oxygen ambient annealing and the interdiffusion issue will be discussed. Furthermore, Ir-Ta-O/SiO2/Si capacitor with 30Å gate oxide was fabricated and the C-V and I-V characteristics were measured to confirm the stability of Ir-Ta-O on thin gate oxide.

1999 ◽  
Vol 596 ◽  
Author(s):  
Fengyan Zhang ◽  
Sheng Teng Hsu ◽  
Tingkai Li ◽  
Yoshi Ono ◽  
Jer-shen Maa ◽  
...  

AbstractThe Metal-Ferroelectric-Metal-Oxide-Silicon (MFMOS) one transistor memory requires a metal electrode directly on top of the thin gate oxide. The gate oxide used in our present MFMOS one transistor memory processing is 30 Å SiO2. Ir has been chosen for the bottom electrode and TaN was used as the barrier layer between the Ir and thin gate oxide. It has been shown from previous studies that a TaN barrier layer can effectively prevent the formation of iridium silicide and can enhance the adhesion between Ir and Si or SiO2 substrates. But it is more important that the TaN itself is stable and will not react with the gate oxide during ferroelectric material deposition, annealing and subsequent processing. In this paper, TaN barriers with different deposition conditions have been deposited on 30 Å gate oxide. 1500 Å Ir was deposited on the TaN barrier layer. Capacitors of Ir/TaN/gate SiO2/Si were defined by dry etching. Series RTP annealing were performed in oxygen from 500 to 650 °C with annealing times from 5 min to 90 min. The capacitor was also annealed in a nitrogen ambient at 1000°C for 10s. C-V and I-V studies were used to characterize the stability of the Ir/TaN/Gate SiO2 structure. It was observed that the Ir/TaN/Gate SiO2 is very stable during the above mentioned annealing conditions. The consumption and further oxidation of the gate oxide is negligible and would depend on the deposition condition of the TaN barrier layer. With optimized deposition conditions, a 220 Å TaN barrier layer can effectively prevent any iridium silicide formation and will not degrade the gate oxide during annealing processing. The interfaces between the TaN and gate SiO2 and between the gate SiO2 and Si substrate can be further improved by forming gas annealing.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS NO6455 is a nickel-chromium-molybdenum alloy with outstanding high-temperature stability as shown by high ductility and corrosion resistance even after long-time aging in the range 1200-1900 F. The alloy also has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-367. Producer or source: Nickel and nickel alloy producers.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


2016 ◽  
Vol 858 ◽  
pp. 300-304
Author(s):  
Zhen Fu Chen ◽  
Dan Wu ◽  
Qiu Wang Tao ◽  
Yuan Chu Gan

The high temperature stability of AC-16, AC-13, AC-20 under specimen thickness of 5cm and 6cm is studied through indoor asphalt mixture high rutting test, Through comparison and analysis about experimental data, it is found that the stability of AC-16, AC-13, AC-20 asphalt mixture at high- temperature decreases in turn. It is shown that thickness changes did not affect the change trend of the high temperature stability under gradation change, and the stability of AC-16 at high-temperature is the best, the AC-13 is second and the AC-20 is less.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (3) ◽  
pp. 169-172 ◽  
Author(s):  
Scott A. Barnett ◽  
Anita Madan ◽  
Ilwon Kim ◽  
Keith Martin

AbstractThis article reviews two topics related to the stability of hard coatings composed of nanometer-thick layers: epitaxial stabilization and high-temperature stability. Early work on nanolayered hard coatings demonstrated large hardness increases as compared with monolithic coatings, but it was subsequently found that the layers interdiffused at elevated temperatures. More recently, it has been shown that nanolayers exhibit good stability at elevated temperatures if the layer materials are thermodynamically stable with respect to each other and are able to form low-energy coherent interfaces. This article discusses metal/nitride, nitride/nitride, and nitride/boride nanolayers that exhibit good high-temperature stability and hardness values that are maintained (or even increase) after high-temperature annealing. Epitaxial stabilization of nonequilibrium structuresin thin layers is a well-known phenomenon that has been applied to hard nitride materials. In particular, AlN, which crystallizes in the hexagonal wurtzite structure in bulk form, was stabilized in the rock-salt cubic structure in nitride/nitride nanolayers (e.g., AlN/TiN). These results and the current understanding of epitaxial stabilization in hard nanolayers are discussed.


1998 ◽  
Vol 514 ◽  
Author(s):  
H. Yag ◽  
J. C. Hu ◽  
J. P. Lu ◽  
G. A. Brown ◽  
A. L. P. Rotondara ◽  
...  

ABSTRACTRefractory metal gates have been studied for CMOS gate electrodes on ultra thin gate oxide due to its midgap work function, low resistivity and no gate depletion, etc. In particular, titanium nitride received most attention because of its process maturity and its good diffusion barrier properties for backend applications. Different TiN film properties are important when TiN is used as a gate material than when it is used for backend applications. One issue is the effect of TiN film impurities on the gate oxides and their high temperature stability since some high temperature processes are usually needed after gate formation. This paper reports the study of different TiN films used as MOS gate electrodes on ultra thin gate oxide and the effects of their impurities on gate oxide electrical performance. PVD TiN films deposited with different process conditions show different oxygen content, and different gate oxide properties were observed when these PVD TiN films were used as gate electrodes. On the other hand CVD TiN films deposited using different precursors also showed different impurities, including carbon, oxygen or silicon, which largely affect CVD TiN performance when used as gate material. The different TiN films were characterized by X-ray glancing angle reflection, XPS, SIMS and TEM, and the electrical properties were studied by I-V, C-V, charge to breakdown (Qbd) and ramp voltage breakdown tests on MOS capacitors. The results showed that the high purity TiN films provide stable gate material with small damage to the gate oxide, but impurities, especially oxygen, affect the gate oxide properties after high temperature anneal. However, due to the different TiN process capabilities, TiN films with impurities may still have advantages over pure TiN film in some cases of different MOS gate applications.


Alloy Digest ◽  
1981 ◽  
Vol 30 (8) ◽  

Abstract RMI 6Al-2Sn-4Zr-2Mo is an alpha-beta titanium alloy that provides a tensile strength of 130,000 psi in the mill-annealed condition. It is characterized by an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high creep strength is required, as in components for jet engines. It has outstanding advantages for long-time use at temperature to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-83. Producer or source: RMI Company.


1992 ◽  
Vol 280 ◽  
Author(s):  
S. R. Stiffler ◽  
C. L. Stanis ◽  
M. S. Goorsky ◽  
K. K. Chan

ABSTRACT:: High temperature (950°C) annealing is used to stimulate relaxation in UHV/CVD SiGe thin films. It is found that the films are stable to thicknesses which exceed the stability criterion of Matthews and Blakeslee [1] by a small amount. In unstable films, the misfit dislocation density increases with annealing time, reaching a maximum value. For films which exceed the empirical stability criterion by a relatively small amount, the misfit dislocations relax the film to a strain given by the film thickness and the empirical stability criterion. However, large remnant strains are observed when the relaxation process introduces relatively high dislocation densities (≳5 misfits/micron). Associated with large remnant strains are a marked propensity for dislocation banding and looping deep into the substrate with extended annealing. These results are discussed with respect to the magnitude of the misfit dislocation nucleation barrier and the energy associated with interactions among misfit dislocations.


2013 ◽  
Vol 405-408 ◽  
pp. 1871-1874
Author(s):  
Gen Chuan Luo

Rutting is one of the most hazardous damage form of asphalt pavement.But,owing to itself inherent in the viscoelastic characteristics of asphalt mixture,the diversity of factors influencing the high temperature of asphalt pavement anti-rutting performance and the complexity of rut formation,this three reasons make ruts become a worldwide problem.Starting from the mixture.This article analyzed the influence factors of the rutting resistance of asphalt mixture at high temperature.For asphalt mixture, through the experimental data, the research status at home and abroad, from the type of asphalt, asphalt content, grading of aggregates and air voids four aspects analysis and study the influence factors of the stability of asphalt mixture at high temperature.


2011 ◽  
Vol 287-290 ◽  
pp. 978-981 ◽  
Author(s):  
Biao Ma ◽  
Jun Li ◽  
Ren Wei Liu ◽  
Jin Ma

Mixing the composite phase change material (CPCM) to asphalt mixture is a new way to solve the worldwide problem of the low-temperature cracking and high temperature rutting of the asphalt pavement. Asphalt mixture with CPCM can remain in the ideal working temperature range for a relatively long time. This paper analyzes the influence of the contents of CPCM on its road performance by laboratory testing. The study shows that mixing CPCM to asphalt mixture had little effect to the optimal asphalt content. For CPCM prepared by polymer shape-stabilized method, the high-temperature stability and the water stability of asphalt mixture increases firstly and then decreases the low-temperature anti-cracking stability decreases firstly and then increases with the increasing of CPCM. For CPCM prepared by carrier-adsorbed packaging process, the high-temperature stability decreases, low-temperature anti-cracking stability decreases firstly and then increases, the water stability increases firstly and then decreases with increasing of CPCM. The results indicate that CPCM has significant influences on its road performance. The optimal content of CPCM is around 0.3%.


Sign in / Sign up

Export Citation Format

Share Document