BaTiO3 Waveguides on MgO Buffered-Sapphire Single Crystals

1999 ◽  
Vol 597 ◽  
Author(s):  
Judit G. Lisoni ◽  
M. Siegert ◽  
C. H. Lei ◽  
C. L. Jia ◽  
J. Schubert ◽  
...  

AbstractWithin our program to develop ferroelectric thin film optical waveguides, we have studied the growth of epitaxial waveguides BaTiO3 on r-plane sapphire substrates with a MgO buffer layer. The films were prepared by pulsed laser deposition (PLD). Their structural properties were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), Rutherford backscattering (RBS) in random and channeling (RBS-c) configuration and atomic force microscopy (AFM). They displayed good crystalline quality, characterized by an RBS-c minimum yield of about 4–6%, a full width at half maximum (FWHM) of the XRD rocking curve measurement of the BaTiO3(200) reflection of 0.32° and a rms roughness of 1.2 nm in a film of ∼ 1.0 μm thickness. The epitaxial relationship was found to be BaTiO3(100) // MgO(100) // A12O3(1102). The refractive index, the birefringence and the optical losses have been measured.

1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


1997 ◽  
Vol 482 ◽  
Author(s):  
A. J. Drehman ◽  
S.-Q. Wang ◽  
P. W. Yip

AbstractUsing off-axis reactive rf sputtering, we have grown extremely smooth, nearly epitaxial, (001) oriented ZnO films on c-axis sapphire substrates. Atomic Force Microscopy was used to determine that these films are extremely smooth, having an rms roughness of only a few tenths of a nanometer. Based on high resolution x-ray diffraction (HXRD), the ZnO is highly oriented, with a rocking curve width of less than 400 arc seconds for the (006) diffraction peak, and only somewhat larger for the (112) reflection. HXRD Phi scans show that the ZnO (112) reflection is rotated in the a-b plane by 30 degrees from the sapphire (113) direction. These two measurements indicate excellent in-plane orientation. We are investigating the use of these buffer layers for subsequent GaN growth. Electrical resistivities of the films exceeded 100 kΩ-cm making ZnO a potential candidate as an insulating buffer layer.


2003 ◽  
Vol 764 ◽  
Author(s):  
A. L. Cai ◽  
J. F. Muth ◽  
H. L. Porter ◽  
A. Kvit ◽  
J. Narayan

AbstractOrdinary and extraordinary indices of refraction, film thickness and waveguide mode information of zinc oxide, zinc oxide doped with nitrogen and zinc oxide doped with tellurium were measured by using a prism coupling waveguide technique. The films were grown on c-axis sapphire substrates by pulsed laser deposition (PLD). High accuracy waveguide measurements show that the ordinary and extraordinary indices of refraction of ZnO samples change with the introduction of nitrogen or tellurium. The densification of films with annealing could also be tracked with precision refractive index measurement. The crystal structure and the optical properties of the films were also characterized by using x-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and cathodoluminescence (CL).


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


2005 ◽  
Vol 38 (2) ◽  
pp. 260-265 ◽  
Author(s):  
Leonore Wiehl ◽  
Jens Oster ◽  
Michael Huth

Epitaxially grown Mo films on a faceted corundum (α-Al2O3)mplane were investigated by transmission electron microscopy. Low- and high-resolution images were taken from a cross-section specimen cut perpendicular to the facets. It was possible to identify unambiguously the crystallographic orientation of these facets and explain the considerable deviation (∼10°) of the experimental interfacet angle, as measured with atomic force microscopy (AFM), from the expected value. For the first time, proof is given for a smooth \{10\bar{1}1\} facet and a curvy facet with orientation near to \{10\bar{1}\bar{2}\}. Moreover, the three-dimensional epitaxial relationship of an Mo film on a faceted corundummsurface was determined.


2020 ◽  
Vol 98 (5) ◽  
pp. 365-375
Author(s):  
Andrea Quintero ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

1999 ◽  
Vol 583 ◽  
Author(s):  
Martin Schmidbauer ◽  
Thomas Wiebach ◽  
Helmut Raidt ◽  
Peter Schäfer ◽  
Michael hanke ◽  
...  

AbstractThe strain distribution inside and in the vicinity of coherently strained self-organized islands has been investigated by high-resolution x-ray diffraction (HRXRD). Finite element method (FEM) calculations were carried out in order to calculate the strain field, which was then used to simulate x-ray reciprocal space maps on the basis of kinematical scattering theory. For Si0 75Ge0.25 islands an abrupt increase in the Ge-concentration at about one third of the island height has been found. This behavior can be attributed to different nucleation stages during growth. Highly strained buried CdSe quantum dots (QDs) strongly influence the surrounding ZnSe matrix. From reciprocal space maps and FEM simulations we were able to estimate the shape and size of the islands. The results are in agreement with transmission electron microscopy (TEM) and UHV atomic force microscopy (AFM) data.


1997 ◽  
Vol 482 ◽  
Author(s):  
P. W. Yip ◽  
S.-Q. Wang ◽  
A. J. Drehman ◽  
L. D. Zhu ◽  
P. E. Norris

AbstractThe nucleation and initial stage of GaN growth on sapphire was investigated by atomic force microscopy, X-ray diffraction and photoluminescence. A 15 to 30 nm thick GaN buffer layer deposited at proper conditions was extremely smooth and nearly amorphous. Proper post deposition annealing resulted in the buffer crystallized. The buffer layer deposition temperature, thickness and annealing time and temperature must be coordinated. Low deposition temperature and/or insufficient annealing of the buffer results in a GaN wafer which has fine spiking surface morphology with an RMS of 3.4 nm for 1.4 μm wafer, strong yellow luminescence and wide xray rocking curve FWHM. High deposition temperature, longer crystallization time, and a low growth rate results in a wafer which exhibits strong band edge luminescence without noticeable yellow luminescence, and a narrow (002) diffraction rocking curve. However, the surface morphology exhibits well developed hexagonal feature with RMS roughness of 14.3 nm for a 570 nm thick layer. X-ray rocking curve analysis revealed buffer crystallization, domain coalescence and alignment process. The FWHM of the ω–scan of GaN (101) diffraction was 1700–2000 arc seconds for 200–1400 nm wafers which indicates that the twist of the domains is not changing much with the growth.


1994 ◽  
Vol 340 ◽  
Author(s):  
Art J. Nelson ◽  
M. Bode ◽  
G. Horner ◽  
K. Sinha ◽  
John Moreland

ABSTRACTEpitaxial growth of the ordered vacancy compound (OVC) CuIn3Se5 has been achieved on GaAs (100) by molecular beam epitaxy (MBE) from Cu2Se and In2Se3 sources. Electron probe microanalysis and X-ray diffraction have confirmed the composition for the 1-3-5 OVC phase and that the film is single crystal Culn3Se5 (100). Transmission electron microscopy (TEM) characterization of the material also showed it to be single crystalline. Structural defects in the layer consisted mainly of stacking faults. Photoluminescence (PL) measurements performed at 7.5 K indicate that the bandgap is 1.28 eV. Raman spectra reveal a strong polarized peak at 152 cm−1, which is believed to arise from the totally symmetric vibration of the Se atoms in the lattice. Atomic force microscopy reveals faceting in a preferred (100) orientation.


Sign in / Sign up

Export Citation Format

Share Document