Interaction of Copper With Single Crystal Sapphire

1985 ◽  
Vol 60 ◽  
Author(s):  
A. G. Schrott ◽  
R. D. Thompson ◽  
K. N. Tu

AbstractThe effect of small coverages of Cu evaporated in ultra-high vacuum (UHV) on A12O3 (0001) surfaces has been investigated by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). These surfaces were cleaned either by annealing at 1000°C in O2 or by Ar sputtering. They differ both in their initial state and their interaction with Cu. The XPS spectra from as-deposited Cu on sputtered samples exhibit small shifts in the energy location of the various peaks as compared to those from a Cu standard. Annealing the Cu/sputtered A12O3 structure at 500°C produces a shoulder on the Cu 3d peak as well as a new Cu (L3 M4.5 M4.5) Auger feature. Neither of these effects are observed after similar treatment of the Cu/annealed A12O3 structure. An influence of this different bonding situation on the Cu-sapphire interfacial energy is observed.

1988 ◽  
Vol 144 ◽  
Author(s):  
Larry P. Sadwick ◽  
Kang L. Wang ◽  
David K. Shuh ◽  
Young K. Kim ◽  
R. Stanley Williams

ABSTRACTThe first epitaxial platinum gallium two (PtGa2) films have been grown on gallium arsenide (GaAs) (100) by co-evaporation of the elements under ultra-high vacuum conditions. An electron beam evaporator and a Knudsen cell were used to produce the platinum and gallium beams, respectively. The resulting films and bulk PtGa2 have been characterized by x-ray diffraction, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. The data confirm the PtGa2 stoichiometry and crystal structure of the films, and demonstrate their chemical stability on GaAs (100). This study supports the contention that PtGa2 can be a suitable, temperature stable contact material on GaAs substrates.


Author(s):  
Kannan M. Krishnan

We review the structure of atoms to describe allowed intra-atomic electronic transitions following dipole selection rules. Inner shell ionization is followed by characteristic X-ray emission or non-radiative de-excitation processes leading to Auger electrons that involve three atomic levels. Photon incidence also results in characteristic photoelectron emission, reflecting the energy distribution of the electrons in the solid. We present details of laboratory and synchrotron sources of X-rays, and discuss their detection by wavelength or energy-dispersive spectrometers, as well as microanalysis with X-ray (XRF), or electron (EPMA) incidence. Characteristic X-ray intensities are quantified in terms of composition using corrections for atomic number (Z), absorption (A), and fluorescence (F). Electron detectors use electrostatic or magnetic dispersing fields; two common designs are electrostatic hemispheric or mirror analyzers. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), used for surface analysis, require ultra-high vacuum. AES is a weak signal, best resolved in a derivative spectrum, shows sensitivity to the chemical state and the atomic environment, provides a spatially-resolved signal for composition mapping, and can be quantified for chemical analysis using sensitivity factors. Finally, we introduce the basics of XPS, a photon-in, electron-out technique, discussed further in §3.


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 523-527 ◽  
Author(s):  
Lothar Klarhöfer ◽  
Florian Voigts ◽  
Dominik Schwendt ◽  
Burkhard Roos ◽  
Wolfgang Viöl ◽  
...  

Abstract Metastable induced electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were applied to study the interaction of Ti metal atoms with spruce surfaces. Spruce surfaces were produced by planing splints from a spruce bar. Ti atoms were adsorbed from a metal evaporator under ultra-high vacuum conditions. The amount adsorbed corresponds to 10 monolayer equivalents. Strong interactions between the spruce surface and metals atoms occurred. Impinging Ti atoms were oxidized by the spruce surface. No Ti agglomeration or particle formation was observed. The surface was smoothed by the Ti applied and was completely covered by a titanium oxide film.


1991 ◽  
Vol 05 (08) ◽  
pp. 581-585
Author(s):  
H. ZHANG ◽  
S.Q. FENG ◽  
Q.R. FENG ◽  
X. ZHU

We have performed an X-ray photoelectron spectroscopy investigation on single-phase samples of Sn -doped YBCO system, together with structure analysis, oxygen content analysis, and superconductivity measurements. The experiment gave evidence that there is a strong correlation between the electronic states of copper and oxygen. When the sample was heated to 600°C for 20 minutes in vacuum chamber, the oxygen escaped from the sample, the binding energy of Cu 2p was decreased, and the two indistinct components of O 1s became clear. Keeping the sample in ultra-high vacuum for 24 hours, a similar result was obtained.


2012 ◽  
Vol 445 ◽  
pp. 709-713 ◽  
Author(s):  
A. Roustila ◽  
A. Rabehi ◽  
M. Souici ◽  
J. Chene

ZrNi intermetallic compound is used in several application fields due to its very favorable characteristics for the storage of hydrogen. The hydrogen reactions are important, it is vital to examine the evolution of physico-chemical properties at the surface. X-ray photoelectron spectroscopy, is used to follow the evolution of electronic properties of ZrNi versus the ion sputtering in ultra high vacuum in the range 300-600°C. Morever, the evolution of species concentrations at the surface of ZrNi in the range 100-700°C is followed by means of Auger electron spectroscopy. The present results show that temperature and ion sputtering favor significant changes in surface properties of ZrNi. In situ annealing of ZrNi favors the oxygen decontamination associated with segregation of zirconium metal on the surface. The values of binding energies deduced from the reconstruction of XPS spectra, allowed the identification of species present at the surface. The results indicate that nickel is not contaminated and all the obtained sub-oxides are related to bonding states of oxygen with zirconium (Zr2O, ZrO, ZrO2and Zr2O3). The ion sputtering of the surface of ZrNi causes preferential sputtering phenomenon. The later results from the removal of surface layers and from the appearance of zirconium oxide layers initially present on the surface. The results obtained by AES show the segregation of impurities (oxygen and carbon) and of zirconium on the surface of ZrNi. AES observations of Zr segregation start to be important above 300°C and this is in agreement with XPS analysis showing a Zr enrichment of the surface of ZrNi.


2019 ◽  
Vol 64 (1) ◽  
pp. 89-95
Author(s):  
T. T. Magkoev ◽  
V. B. Zaalishvili ◽  
O. G. Burdzieva ◽  
G. E. Tuaev ◽  
G. S. Grigorkina

Adsorption of atoms of Co, Mn, Fe on the calcite surface in ultra-high vacuum and the interaction of the formed adsorption systems with the water have been studied by means of X-ray photoelectron spectroscopy. It is shown that Mn and Fe form solid solutions CaCO3/Mn(Fe)CO3 on the calcite surface, whereas Co preferentially forms CoO and Co3O4. Upon interaction with water the surface compounds formed by Mn and Fe do not undergo notable changes, unlike the Co oxides which partially transform into soluble hydroxylated complexes.


2012 ◽  
Vol 2 (6) ◽  
pp. 291-294
Author(s):  
S. Karakalos

The growth mode of MgCl2 on Ti (0001) and on SiO2 grown on Si (100) was investigated by X-ray Photoelectron Spectroscopy (XPS) under UHV conditions. Magnesium chloride grows on both Ti (0001) single crystal and SiO2 following the Frank-van der Merve, (FM) growth mode.


2019 ◽  
Author(s):  
Timothy J. Gorey ◽  
Yang Dai ◽  
Scott Anderson ◽  
Sungsik Lee ◽  
Sungwon Lee ◽  
...  

In heterogeneous catalysis, atomic layer deposition (ALD) has been developed as a tool to stabilize and reduce carbon deposition on supported nanoparticles. Here, we discuss use of high vacuum ALD to deposit alumina films on size-selected, sub-nanometer Pt/SiO2 model catalysts. Mass-selected Pt24 clusters were deposited on oxidized Si(100), to form model Pt24/SiO2 catalysts with particles shown to be just under 1 nm, with multilayer three dimensional structure. Alternating exposures to trimethylaluminum and water vapor in an ultra-high vacuum chamber were used to grow alumina on the samples without exposing them to air. The samples were probed in situ using X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (ISS), and CO temperature-programmed desorption (TPD). Additional samples were prepared for ex situ experiments using grazing incidence small angle x-ray scattering spectroscopy (GISAXS). Alumina growth is found to initiate at least 60 times more efficiently at the Pt24 cluster sites, compared to bare SiO2/Si, with a single ALD cycle depositing a full alumina layer on top of the clusters, with substantial additional alumina growth initiating on SiO2 sites surrounding the clusters. As a result, the clusters were completely passivated, with no exposed Pt binding sites.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3510
Author(s):  
Lukasz Skowronski ◽  
Arkadiusz Ciesielski ◽  
Aleksandra Olszewska ◽  
Robert Szczesny ◽  
Mieczyslaw Naparty ◽  
...  

Zinc oxide films have been fabricated by the electron beam physical vapour deposition (PVD) technique. The effect of substrate temperature during fabrication and annealing temperature (carried out in ultra high vacuum conditions) has been investigated by means of atomic force microscopy, scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. It was found that the layer deposited at room temperature is composed of Zn and ZnO crystallites with a number of orientations, whereas those grown at 100 and 200 ∘C consist of ZnO grains and exhibit privileged growth direction. Presented results clearly show the influence of ZnO decomposition and segregation of Zn atoms during evaporation and post-deposition annealing on microstructure and optical properties of zinc oxide films.


2006 ◽  
Vol 527-529 ◽  
pp. 673-676 ◽  
Author(s):  
W.Y. Lee ◽  
S. Soubatch ◽  
Ulrich Starke

The atomic structure of the 4H-SiC(11 2 0) surface including possible phase transformations via Si deposition and annealing has been investigated using low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The sample is initially prepared by hydrogen etching before loading into the ultra-high vacuum system. The sample is then out-gassed to remove oxygen from the surface. To explore the existence of ordered surface phases, Si is deposited on the sample at 850°C for 15 minutes followed by a series of sequential annealing steps. Throughout this process, the surface is monitored by LEED, AES and XPS. LEED shows that the surface continuously maintains a (1×1) periodicity. Yet, two unique and distinguishable (1×1) phases can be identified. The changes between these phases are clearly demonstrated by the LEED spot intensities. Simultaneously, the Auger and XPS data show a decrease in Si intensity.


Sign in / Sign up

Export Citation Format

Share Document