Preparation of Microcrystalline Silicon Based Solar Cells at High i-layer Deposition Rates Using a Gas Jet Technique

2000 ◽  
Vol 609 ◽  
Author(s):  
S.J. Jones ◽  
R. Crucet ◽  
X. Deng ◽  
D.L. Williamson ◽  
M. Izu

ABSTRACTA Gas Jet technique has been used to prepare microcrystalline silicon (μc-Si) thin films at deposition rates as high as 20 Å/s. The films have microcrystal sizes between 80 and 120 Å with a heterogeneous microstructure containing regions with columnar growth and other regions with a more randomly oriented microstructure. These materials have been used as i-layers for nip single-junction solar cells. The high deposition rates allow for fabrication of the required thicker μc-Si i-layers in a similar amount of time to those used for high quality a-SiGe:H i-layers (rates of 1-3 Å/s). Using a 610nm cutoff filter which only allows red light to strike the device, pre-light soaked short circuit currents of 8-10 mA/cm2 and 2.7% red-light efficiencies have been obtained while AM1.5 white light efficiencies are above 7%. These efficiencies are higher than those typically obtained for μc-Si cells prepared at the high i-layer growth rates using other deposition techniques. After 1000 h. of light soaking, the efficiencies on average degrade only by 2-5% (stabilized efficiencies of 2.6%) consistent with the expected high stability with the microcrystalline materials. The small amount of degradation compares with the 15-17% degradation in efficiencies for a-SiGe:H cells subjected to similar irradiation treatments (final light-soaked red light efficiencies of 3.2%). Improvements in the cell efficiencies may come through an understanding of the role that columnar microstructure and void structure plays in determining the device performance.

1999 ◽  
Vol 557 ◽  
Author(s):  
S.J. Jones ◽  
R. Crucet ◽  
X. Deng ◽  
J. Doehler ◽  
R. Kopf ◽  
...  

AbstractUsing a Gas Jet thin film deposition technique, microcrystalline silicon (μc-Si) materials were prepared at rates as high as 15-20 Å/s. The technique involves the use of a gas jet flow that is subjected to a high intensity microwave source. The quality of the material has been optimized through the variation of a number of deposition conditions including the substrate temperature, the gas flows, and the applied microwave power. The best films were made using deposition rates near 16 Å/s. These materials have been used as i-layers for red light absorbing, nip single-junction solar cells. Using a 610nm cutoff filter which only allows red light to strike the device, pre-light soaked currents as high as 10 mA/cm2 and 2.2-2.3% red-light pre-light soaked peak power outputs have been obtained for cells with i-layer thicknesses near 1 micron. This compares with currents of 10-11 mA/cm2 and 4% initial red-light peak power outputs obtained for high efficiency amorphous silicon germanium alloy (a-SiGe:H) devices. The AM1.5 white light efficiencies for these microcrystalline cells are 5.9-6.0%. While the efficiencies for the a-SiGe:H cells degrade by 15-20% after long term light exposure, the efficiencies for the microcrystalline cells before and after prolonged light exposure are similar, within measurement error. Considering these results, the Gas Jet deposition method is a promising technique for the deposition of μc-Si solar cells due to the ability to achieve reasonable stable efficiencies for cells at i-layer deposition rates (16 Å/s) which make large-scale production economically feasible.


2006 ◽  
Vol 910 ◽  
Author(s):  
Qi Wang ◽  
Matt P. Page ◽  
Eugene Iwancizko ◽  
Yueqin Xu ◽  
Yanfa Yan ◽  
...  

AbstractWe have achieved an independently-confirmed 17.8% conversion efficiency in a 1-cm2, p-type, float-zone silicon (FZ-Si) based heterojunction solar cell. Both the front emitter and back contact are hydrogenated amorphous silicon (a-Si:H) deposited by hot-wire chemical vapor deposition (HWCVD). This is the highest reported efficiency for a HWCVD silicon heterojunction (SHJ) solar cell. Two main improvements lead to our most recent increases in efficiency: 1) the use of textured Si wafers, and 2) the application of a-Si:H heterojunctions on both sides of the cell. Despite the use of textured c-Si to increase the short-circuit current, we were able to maintain the same 0.65 V open-circuit voltage as on flat c-Si. This is achieved by coating a-Si:H conformally on the c-Si surfaces, including covering the tips of the anisotropically-etched pyramids. A brief atomic H treatment before emitter deposition is not necessary on the textured wafers, though it was helpful in the flat wafers. It is essential to high efficiency SHJ solar cells that the emitter grows abruptly as amorphous silicon, instead of as microcrystalline or epitaxial Si. The contact on each side of the cell comprises a thin (< 5 nm) low substrate temperature (~100°C) intrinsic a-Si:H layer, followed by a doped layer. Our intrinsic layers are deposited at 0.3-1.2 nm/s. The doped emitter and back-contact layers were deposited at a higher temperature (>200°C) and grown from PH3/SiH4/H2 and B2H6/SiH4/H2 doping gas mixtures, respectively. This combination of low (intrinsic) and high (doped layer) growth temperatures was optimized by lifetime and surface recombination velocity measurements. Our rapid efficiency advance suggests that HWCVD may have advantages over plasma-enhanced (PE) CVD in fabrication of high-efficiency heterojunction c-Si cells; there is no need for process optimization to avoid plasma damage to the delicate, high-quality, Si wafers.


2002 ◽  
Vol 715 ◽  
Author(s):  
R. E. I. Schropp ◽  
Y. Xu ◽  
E. Iwaniczko ◽  
G. A. Zaharias ◽  
A. H. Mahan

AbstractWe have explored which deposition parameters in Hot Wire CVD have the largest impact on the quality of microcrystalline silicon (μc-Si) made at deposition rates (Rd) < 10 Å/s for use in thin film solar cells. Among all parameters, the filament temperature (Tfil) appears to be crucial for making device quality films. Using two filaments and a filament-substrate spacing of 3.2 cm, μc-Si films, using seed layers, can be deposited at high Tfil (∼2000°C) with a crystalline volume fraction < 70-80 % at Rd's < 30 Å/s. Although the photoresponse of these layers is high (< 100), they appear not to be suitable for incorporation into solar cells, due to their porous nature. n-i-p cells fabricated on stainless steel with these i-layers suffer from large resistive effects or barriers, most likely due to the oxidation of interconnected pores in the silicon layer. The porosity is evident from FTIR measurements showing a large oxygen concentration at ∼1050 cm-1, and is correlated with the 2100 cm-1 signature of most of the Si-H stretching bonds. Using a Tfil of 1750°C, however, the films are more compact, as seen from the absence of the 2100 cm-1 SiH mode and the disappearance of the FTIR Si-O signal, while the high crystalline volume fraction (< 70-80 %) is maintained. Using this Tfil and a substrate temperature of 400°C, we obtain an efficiency of 4.9 % for cells with a Ag/ZnO back reflector, with an i-layer thickness of only ∼0.7 μm. High values for the quantum efficiency extend to very long wavelengths, with values of 33 % at 800 nm and 15 % at 900 nm, which are unequalled by a-SiGe:H alloys. Further, by varying the substrate temperature to enable deposition near the microcrystalline to amorphous transition (‘edge’) and incorporating variations in H2 dilution during deposition of the bulk, efficiencies of 6.0 % have been obtained. The Rd's of these i-layers are 8-10 Å/s, and are the highest to date obtained with HWCVD for microcrystalline layers used in cells with efficiencies of ∼6 %.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Tsvetelina Merdzhanova ◽  
Jan Woerdenweber ◽  
Thilo Kilper ◽  
Helmut Stiebig ◽  
Wolfhard Beyer ◽  
...  

AbstractWe report on a direct comparison of the effect of the atmospheric contaminants on a-Si:H and μc-Si:H p-i-n solar cells deposited by plasma-enhanced chemical vapor deposition (PECVD) at 13.56 MHz. Nitrogen and oxygen were inserted by two types of controllable contamination sources: (i) directly into the plasma through a leak at the deposition chamber wall or (ii) into the process gas supply line. Similar critical concentrations in the range of 4-6×1018 cm-3 for nitrogen and 1.2-5×1019 cm-3 for oxygen were observed for both a-Si:H and μc-Si:H cells for the chamber wall leak. Above these critical concentrations the solar cell efficiency decreases for a-Si:H solar cells due to losses in the fill factor under red light illumination (FFred). For μc-Si:H cells the losses in FFred and in short-circuit current density deteriorate the device performance. Only for a-Si:H the critical oxygen concentration is found to depend on the contamination source. Conductivity measurements suggest that at the critical oxygen concentration the Fermi level is located about 0.05 eV above midgap for both a-Si:H and μc-Si:H.


2002 ◽  
Vol 715 ◽  
Author(s):  
Baojie Yan ◽  
Kenneth Lord ◽  
Jeffrey Yang ◽  
Subhendu Guha ◽  
Jozef Smeets ◽  
...  

AbstractHydrogenated microcrystalline silicon (μc-Si:H) solar cells are made using modified veryhigh-frequency (MVHF) glow discharge at deposition rates ∼3-5 Å/s. We find that the solar cells made under certain conditions show degradation in air without intentional light soaking. The short-circuit current drops significantly within a few days after deposition, and then stabilizes. We believe that post-deposition oxygen diffusion along the grain boundaries or cracks is the origin of the ambient degradation. By optimizing the deposition conditions, we have found a plasma regime in which the μc-Si:H solar cells do not show such ambient degradation. The best a-Si:H/μc-Si:H double-junction solar cell has an initial active-area efficiency of 10.9% and is stable against the ambient degradation. The stability data of the solar cells after light soaking are also presented.


2002 ◽  
Vol 715 ◽  
Author(s):  
S. Klein ◽  
F. Finger ◽  
R. Carius ◽  
B. Rech ◽  
L. Houben ◽  
...  

AbstractThin film microcrystalline silicon solar cells were prepared with intrinsic absorber layers by Hot Wire CVD at various silane concentrations and substrate temperatures. Independently from the substrate temperature, a maximum efficiency is observed close to the transition to amorphous growth, i.e. the best cells already show considerable amorphous volume fractions. A detailed analysis of the thickness dependence of the solar cell parameters in the dark and under illumination indicate a high electronic quality of the i-layer material. Solar cells with very high open circuit voltages Voc up to 600mV in combination with fill factors above 70% and high short circuit current densities jsc of 22mA/cm2 were obtained, yielding efficiencies above 9%. The highest efficiency of 9.4% was achieved in solar cells of 1.4μm and 1.8μm thickness. These cells with high Voc have considerable amorphous volume fractions in the i-layer, leading to a reduced absorption in the infrared wavelength region.


2014 ◽  
Author(s):  
M. Bär ◽  
D. E. Starr ◽  
A. Lambertz ◽  
B. Holländer ◽  
J.-H. Alsmeier ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yunfeng Yin ◽  
Nasim Sahraei ◽  
Selvaraj Venkataraj ◽  
Sonya Calnan ◽  
Sven Ring ◽  
...  

Microcrystalline silicon (μc-Si:H) thin-film solar cells are processed on glass superstrates having both micro- and nanoscale surface textures. The microscale texture is realised at the glass surface, using the aluminium-induced texturing (AIT) method, which is an industrially feasible process enabling a wide range of surface feature sizes (i.e., 700 nm–3 μm) of the textured glass. The nanoscale texture is made by conventional acid etching of the sputter-deposited transparent conductive oxide (TCO). The influence of the resulting “double texture” on the optical scattering is investigated by means of atomic force microscopy (AFM) (studying the surface topology), haze measurements (studying scattering into air), and short-circuit current enhancement measurements (studying scattering into silicon). A predicted enhanced optical scattering efficiency is experimentally proven by a short-circuit current enhancementΔIscof up to 1.6 mA/cm2(7.7% relative increase) compared to solar cells fabricated on a standard superstrate, that is, planar glass covered with nanotextured TCO. Enhancing the autocorrelation length (or feature size) of the AIT superstrates might have the large potential to improve theμc-Si:H thin-film solar cell efficiency, by reducing the shunting probability of the device while maintaining a high optical scattering performance.


2007 ◽  
Vol 989 ◽  
Author(s):  
Kobsak Sriprapha ◽  
Ihsanul Afdi Yunaz ◽  
Shuichi Hiza ◽  
Kun Ho Ahn ◽  
Seung Yeop Myong ◽  
...  

AbstractThe temperature dependence of Si-based thin-film single junction solar cells on the phase of the intrinsic absorber is investigated in order to find the optimal absorber at high operating temperatures. For comparison, hydrogenated amorphous, protocrystalline, and microcrystalline silicon solar cells are fabricated by plasma-enhanced chemical vapor deposition and hot-wired CVD techniques. Photo J-V characteristics are measured using a solar simulator at the ambient temperature range of 25-85°C. It is found that the cells with a higher open-circuit voltage usually show lower temperature-dependent behaviors; the protocrystalline silicon solar cells provide the lowest temperature coefficient of efficiency, while the microcrystalline silicon solar cells are highly sensitive to the temperature. Therefore, protocrystalline silicon solar cells are promising for use in high temperature regions.


Sign in / Sign up

Export Citation Format

Share Document