Microcrystalline Silicon for Solar Cells at High Deposition Rates by Hot Wire Cvd

2002 ◽  
Vol 715 ◽  
Author(s):  
R. E. I. Schropp ◽  
Y. Xu ◽  
E. Iwaniczko ◽  
G. A. Zaharias ◽  
A. H. Mahan

AbstractWe have explored which deposition parameters in Hot Wire CVD have the largest impact on the quality of microcrystalline silicon (μc-Si) made at deposition rates (Rd) < 10 Å/s for use in thin film solar cells. Among all parameters, the filament temperature (Tfil) appears to be crucial for making device quality films. Using two filaments and a filament-substrate spacing of 3.2 cm, μc-Si films, using seed layers, can be deposited at high Tfil (∼2000°C) with a crystalline volume fraction < 70-80 % at Rd's < 30 Å/s. Although the photoresponse of these layers is high (< 100), they appear not to be suitable for incorporation into solar cells, due to their porous nature. n-i-p cells fabricated on stainless steel with these i-layers suffer from large resistive effects or barriers, most likely due to the oxidation of interconnected pores in the silicon layer. The porosity is evident from FTIR measurements showing a large oxygen concentration at ∼1050 cm-1, and is correlated with the 2100 cm-1 signature of most of the Si-H stretching bonds. Using a Tfil of 1750°C, however, the films are more compact, as seen from the absence of the 2100 cm-1 SiH mode and the disappearance of the FTIR Si-O signal, while the high crystalline volume fraction (< 70-80 %) is maintained. Using this Tfil and a substrate temperature of 400°C, we obtain an efficiency of 4.9 % for cells with a Ag/ZnO back reflector, with an i-layer thickness of only ∼0.7 μm. High values for the quantum efficiency extend to very long wavelengths, with values of 33 % at 800 nm and 15 % at 900 nm, which are unequalled by a-SiGe:H alloys. Further, by varying the substrate temperature to enable deposition near the microcrystalline to amorphous transition (‘edge’) and incorporating variations in H2 dilution during deposition of the bulk, efficiencies of 6.0 % have been obtained. The Rd's of these i-layers are 8-10 Å/s, and are the highest to date obtained with HWCVD for microcrystalline layers used in cells with efficiencies of ∼6 %.

2000 ◽  
Vol 609 ◽  
Author(s):  
Takashi Itoh ◽  
Noriyuki Yamana ◽  
Hiroki Inouchi ◽  
Norimitsu Yoshida ◽  
Hidekuni Harada ◽  
...  

ABSTRACTHydrogenated microcrystalline silicon (μc-Si:H) films are prepared by hot-wire assisted plasma enhanced chemical vapor deposition, which controls the hydrogen radical density by filament temperatures, Tf, without changing other conditions. The effect of hydrogen radical on the properties of incorporated hydrogen into μc-Si:H films is studied using infrared absorption and gas effusion spectroscopies. The hydrogen concentration decreases with increasing Tf. The crystalline volume fraction, Xc, increases with Tf and shows a peak at Tf of 1850 °C. Integrated intensities of the modes near 2000 and 2100 cm-1 decrease with increasing Tf. Integrated intensity of the mode near 880 cm-1 shows almost same tendency of Xc. The effect of hydrogen radical on the properties of incorporated hydrogen into μc-Si:H films is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yen-Tang Huang ◽  
Hung-Jung Hsu ◽  
Shin-Wei Liang ◽  
Cheng-Hang Hsu ◽  
Chuang-Chuang Tsai

Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys were developed for application in Si-based thin-film solar cells. The effects of thegermane concentration(RGeH4)and thehydrogen ratio(RH2)on theμc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H andμc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed inμc-Si1-xGex:H. Moreover, a higherRH2significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected byRH2inμc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasingRGeH4, the accompanied increase in Ge content ofμc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization ofRH2andRGeH4, the single-junctionμc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared toμc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.


2013 ◽  
Vol 537 ◽  
pp. 197-200
Author(s):  
Chun Ya Li ◽  
Hao Zhang ◽  
Jun Li ◽  
Xi Feng Li ◽  
Jian Hua Zhang

Under different growth conditions, microcrystalline silicon thin films are deposited successfully on glass substrates by the double-frequency plasma enhanced chemical vapor deposition (PECVD). We report the systematic investigation of the effect of process parameters (hydrogen dilution, substrate temperature, forward power, reaction pressure, et al.) on the growth characteristics of microcrystalline silicon thin films. Raman scattering spectra are used to analyze the crystalline condition of the films and the experimental results. Optimizing the process parameters, the highest crystalline volume fraction of microcrystalline silicon films was achieved. It is found that the crystalline volume fraction of microcrystalline silicon films reaches 72.2% at the reaction pressure of 450 Pa, H2/SiH4 flow ratio of 800sccm/10sccm, power of 400 W and substrate temperature of 350 °C.


2003 ◽  
Vol 762 ◽  
Author(s):  
E. Iwaniczko ◽  
A.H. Mahan ◽  
B. Yan ◽  
L.N. Gedvilas ◽  
D.L. Williamson ◽  
...  

Abstractμc-Si has traditionally been deposited by Hot Wire CVD at a low filament temperature. At these temperatures, silicides rapidly form on the filament surface, leading in the case of a tungsten filament to both film reproducibility and filament lifetime issues. By depositing films consecutively using identical deposition parameters, these issues are chronicled for a filament temperature of ∼ 1750°C. Upon increasing the filament temperature to ∼1825-1850°C, these reproducibility and lifetime issues disappear and, by lowering both the substrate temperature and chamber pressure, device quality μc-Si is deposited at high deposition rates in a filament regime where tungsten silicide formation is minimal. Both single junction and tandem solar cells are fabricated using this material, confirming the validity of this approach.


2008 ◽  
Vol 2 (4) ◽  
pp. 154-156 ◽  
Author(s):  
Q. Zhang ◽  
E. V. Johnson ◽  
Y. Djeridane ◽  
A. Abramov ◽  
P. Roca i Cabarrocas

2001 ◽  
Vol 664 ◽  
Author(s):  
Tobias Roschek ◽  
Bernd Rech ◽  
Wolfhard Beyer ◽  
Peter Werner ◽  
Felix Edelman ◽  
...  

ABSTRACTMicrocrystalline silicon (μc-Si:H) solar cells were prepared in a wide range of deposition parameters using 13.56 MHz plasma-enhanced chemical vapour deposition (PECVD). The best μc-Si:H solar cells were prepared close to the transition to amorphous silicon (a-Si:H) growth at very high deposition pressures (∼10 Torr) showing solar cell efficiencies up to 8.0 % at a deposition rate of 5ÊÅ/s. Investigations of the solar cells were performed by Raman spectroscopy and transmission electron microscopy (TEM). TEM measurements revealed similar structural properties with similar high crystalline volume fractions for these cells although they showed distinctly different efficiencies. However, an increased amorphous volume fraction was detected by Raman spectroscopy for the low efficiency cells prepared at low deposition pressures. This result is attributed to an increased ion bombardment at low pressures.


2007 ◽  
Vol 989 ◽  
Author(s):  
Kyung-Bae Park ◽  
Ji-Sim Jung ◽  
Jong-Man Kim ◽  
Myung-kwan Ryu ◽  
Sang-Yoon Lee ◽  
...  

AbstractMicrocrystalline silicon was deposited on glass by standard plasma enhanced chemical vapor deposition using H2 diluted SiH4. Raman spectroscopy indicated a crystalline volume fraction of as high as 40% in films deposited at a substrate temperature 350oC. The deposition rate in films was as high as 10&Aring;/sec. This process produced ¥ìc-Si TFTs with both an electron mobility of 10.9cm2/Vs, a threshold voltage of 1.2V, a subthreshold slop of 0.5V/dec at n-channel TFTs and a hole mobility of 3.2cm2/Vs, a threshold voltage of -5V, a subthreshold slop of 0.42V/dec at p-channel TFTs without post-fabrication annealing.


2003 ◽  
Vol 762 ◽  
Author(s):  
E. Iwaniczko ◽  
A.H. Mahan ◽  
B. Yan ◽  
L.N. Gedvilas ◽  
D.L. Williamson ◽  
...  

Abstractμc-Si has traditionally been deposited by Hot Wire CVD at a low filament temperature. At these temperatures, silicides rapidly form on the filament surface, leading in the case of a tungsten filament to both film reproducibility and filament lifetime issues. By depositing films consecutively using identical deposition parameters, these issues are chronicled for a filament temperature of ∼ 1750°C. Upon increasing the filament temperature to ∼ 1825-1850°C, these reproducibility and lifetime issues disappear and, by lowering both the substrate temperature and chamber pressure, device quality μc-Si is deposited at high deposition rates in a filament regime where tungsten silicide formation is minimal. Both single junction and tandem solar cells are fabricated using this material, confirming the validity of this approach.


2002 ◽  
Vol 715 ◽  
Author(s):  
N. Wyrsch ◽  
C. Droz ◽  
L. Feitknecht ◽  
J. Spitznagel ◽  
A. Shah

AbstractUndoped microcrystalline silicon samples deposited in the transition regime between amorphous and microcrystalline growth have been investigated by dark conductivity measurement and Raman spectroscopy. From the latter, a semi-quantitative crystalline volume fraction Xc of the sample was deduced and correlated with dark conductivity data in order to reveal possible percolation controlled transport. No threshold was observed around the critical crystalline fraction value Xc of 33%, as reported previously, but a threshold in conductivity data was found at Xc≈50%. This threshold is interpreted here speculatively as being the result of postoxidation, and not constituting an actual percolation threshold.


1999 ◽  
Vol 557 ◽  
Author(s):  
S.J. Jones ◽  
R. Crucet ◽  
X. Deng ◽  
J. Doehler ◽  
R. Kopf ◽  
...  

AbstractUsing a Gas Jet thin film deposition technique, microcrystalline silicon (μc-Si) materials were prepared at rates as high as 15-20 Å/s. The technique involves the use of a gas jet flow that is subjected to a high intensity microwave source. The quality of the material has been optimized through the variation of a number of deposition conditions including the substrate temperature, the gas flows, and the applied microwave power. The best films were made using deposition rates near 16 Å/s. These materials have been used as i-layers for red light absorbing, nip single-junction solar cells. Using a 610nm cutoff filter which only allows red light to strike the device, pre-light soaked currents as high as 10 mA/cm2 and 2.2-2.3% red-light pre-light soaked peak power outputs have been obtained for cells with i-layer thicknesses near 1 micron. This compares with currents of 10-11 mA/cm2 and 4% initial red-light peak power outputs obtained for high efficiency amorphous silicon germanium alloy (a-SiGe:H) devices. The AM1.5 white light efficiencies for these microcrystalline cells are 5.9-6.0%. While the efficiencies for the a-SiGe:H cells degrade by 15-20% after long term light exposure, the efficiencies for the microcrystalline cells before and after prolonged light exposure are similar, within measurement error. Considering these results, the Gas Jet deposition method is a promising technique for the deposition of μc-Si solar cells due to the ability to achieve reasonable stable efficiencies for cells at i-layer deposition rates (16 Å/s) which make large-scale production economically feasible.


Sign in / Sign up

Export Citation Format

Share Document